Background: Ulcerative colitis (UC) is an inflammatory bowel disease which seriously affects the quality of life of patients. There has been an increasing amount of research related to the therapeutic effects and mechanisms of natural plant substances in the treatment of recurrent UC. Rauwolfia verticillata var.Hainanensis is a medicinal plant that is native to Hainan Island, China. Some studies have documented that pectic polysaccharides (PPs) from Rauvolfia inhibited the progression of colon ulcers. However, their mechanisms of action have not been established. Studies have revealed that suppressing pyroptosis can attenuate the damage of experimental colitis. However, it is unclear whether PPs from Rauvolfia verticillata inhibit inflammation through pyroptosis. This study investigated the effects and potential mechanisms of PPs extracted from Rauvolfia verticillata on experimental UC in mice.Methods: Male C57 mice (6-8 weeks old) were allocated into the control group, the dextran sulfate sodium (DSS)-induced UC model group (DSS group), or the DSS with pectic polysaccharides treatment group (DSS + PP group). The body weights, rectal bleeding, and stool consistencies in the mice were observed, and the disease activity index (DAI) score was calculated. Colon tissues were collected for pathological analysis by histological hematoxylin and eosin (H&E) staining. The levels of caspase-1 and interleukin (IL)-1β were detected by immunohistochemistry. Pyroptosis was assessed by transmission electron microscopy.Results: UC in mice induced by DSS resulted in decreased general physical activity and body weight, increased DAI score, significant histological changes, inhibited caspase-1 and IL-1β expression, and promoted pyroptosis. These DSS-induced changes could be partially ameliorated by administration of PP.Conclusions: PPs exerted an ameliorative effect on DSS-induced UC in mice by reducing pyroptosis.
Pancreatic cancer (PC) is a common cause of cancer death. Although more and more evidences suggest that circular RNAs (circRNAs) are associated with the development of cancer, the biological function of circRNAs in PC has not been fully explored. Based on previous studies, Hsa_circ_0000994 was screened out, and its clinical significance, functional role, and mechanism in PC are poorly studied. In various cell lines, 50 PC tissues, and an equal number of normal tissues, RT-qPCR was used to identify expression level of Hsa_circ_0000994. The impact of Hsa_circ_0000994 on metastasis, cell proliferation, and apoptosis was detected using functional loss and functional gain tests. An animal study was also conducted. Underlying mechanisms of Hsa_circ_0000994 were revealed by luciferase reporter gene detection. Hsa_circ_0000994 was lowly expressed in PC tissues as well as various PC cell lines, and this low expression was closely related to cancer. In terms of functional testing, Hsa_circ_0000994 suppressed core ability of PC cells, including proliferation, migration, and invasion ability. Xenotransplantation studies further confirmed the effect of Hsa_circ_0000994 in promoting cell growth. Mechanically, Hsa_circ_0000994 inhibited miR-27a and miR-27b. Hsa_circ_0000994 inhibited the cancer cells through the effect on miR-27a and miR-27b. In summary, a circRNA with tumor suppressor effects on PC has been elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.