In cognitive radio systems, cooperative spectrum sensing is conducted among the cognitive users so as to detect the primary user accurately. However, when the number of cognitive users tends to be very large, the bandwidth for reporting their sensing results to the common receiver will be very huge. In this paper, we employ a censoring method with quantization to decrease the average number of sensing bits to the common receiver. By censoring the collected local observations, only the users with enough information will send their local one bit decisions (0 or 1) to the common receiver. The performance of spectrum sensing is investigated for both perfect and imperfect reporting channels. Numerical results will show that the average number of sensing bits decreases greatly at the expense of a little sensing performance loss.
To solve the problems of low accuracy, low real-time performance, poor robustness and others caused by the complex environment, this paper proposes a face mask recognition and standard wear detection algorithm based on the improved YOLO-v4. Firstly, an improved CSPDarkNet53 is introduced into the trunk feature extraction network, which reduces the computing cost of the network and improves the learning ability of the model. Secondly, the adaptive image scaling algorithm can reduce computation and redundancy effectively. Thirdly, the improved PANet structure is introduced so that the network has more semantic information in the feature layer. At last, a face mask detection data set is made according to the standard wearing of masks. Based on the object detection algorithm of deep learning, a variety of evaluation indexes are compared to evaluate the effectiveness of the model. The results of the comparations show that the mAP of face mask recognition can reach 98.3% and the frame rate is high at 54.57 FPS, which are more accurate compared with the exiting algorithm.
At present, the digital economy, which takes information technology and data as the key elements, is booming and has become an important force in promoting the economic growth of various countries. In order to explore the current dynamic trend of China’s digital economy development and the impact of the digital economy on the high-quality economic development, this paper measures the digital economic development index of 30 cities in China from the three dimensions of digital infrastructure, digital industry, and digital integration, uses panel data of 30 cities in China from 2015 to 2019 to construct an econometric model for empirical analysis, and verifies the mediating effect of technological progress between the digital economy and high-quality economic development. The results show that (1) The development level of China’s digital economy is increasing year by year, that the growth of digital infrastructure is obvious, and that the development of the digital industry is relatively slow. (2) Digital infrastructure, digital industry and digital integration all have significant positive effects on regional total factor productivity, and the influence coefficients are 0.2452, 0.0773 and 0.3458 respectively. (3) Regarding the transmission mechanism from the digital economy to the high-quality economic development, the study finds that the mediating effect of technological progress is 0.1527, of which the mediating effect of technological progress in the eastern, northeast, central and western regions is 1.70%, 9.25%, 28.89% and 21.22% respectively. (4) From the perspective of spatial distribution, the development level of the digital economy in the eastern region is much higher than that in other non-eastern regions, and the development of digital economy in the eastern region has a higher marginal contribution rate to the improvement of the total factor productivity. This study can provide a theoretical basis and practical support for the government to formulate policies for the development of the digital economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.