SummaryATAC-seq is rapidly emerging as one of the major experimental approaches to probe chromatin accessibility genome-wide. Here, we present ‘esATAC’, a highly integrated easy-to-use R/Bioconductor package, for systematic ATAC-seq data analysis. It covers essential steps for full analyzing procedure, including raw data processing, quality control and downstream statistical analysis such as peak calling, enrichment analysis and transcription factor footprinting. esATAC supports one command line execution for preset pipelines and provides flexible interfaces for building customized pipelines.Availability and implementationesATAC package is open source under the GPL-3.0 license. It is implemented in R and C++. Source code and binaries for Linux, MAC OS X and Windows are available through Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/esATAC.html).Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Cell-free DNA (cfDNA) is gaining substantial attention from both biological and clinical fields as a promising marker for liquid biopsy. Many aspects of disease-related features have been discovered from cfDNA high-throughput sequencing (HTS) data. However, there is still a lack of integrative and systematic tools for cfDNA HTS data analysis and quality control (QC). Results Here, we propose cfDNApipe, an easy-to-use and systematic python package for cfDNA whole-genome sequencing (WGS) and whole-genome bisulfite sequencing (WGBS) data analysis. It covers the entire analysis pipeline for the cfDNA data, including raw sequencing data processing, QC and sophisticated statistical analysis such as detecting copy number variations (CNVs), differentially methylated regions (DMRs) and DNA fragment size alterations. cfDNApipe provides one-command-line-execution pipelines and flexible application programming interfaces for customized analysis. Availability https://xwanglabthu.github.io/cfDNApipe/ Supplementary information Supplementary data are available at Bioinformatics online.
Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent advances of single cell Hi-C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to study the cell-to-cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi-C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi-C analysis with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi-C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types. We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of chromatin contacts.
Ribosomal deoxyribonucleic acid (DNA) (rDNA) repeats are tandemly located on five acrocentric chromosomes with up to hundreds of copies in the human genome. DNA methylation, the most well-studied epigenetic mechanism, has been characterized for most genomic regions across various biological contexts. However, rDNA methylation patterns remain largely unexplored due to the repetitive structure. In this study, we designed a specific mapping strategy to investigate rDNA methylation patterns at each CpG site across various physiological and pathological processes. We found that CpG sites on rDNA could be categorized into two types. One is within or adjacent to transcribed regions; the other is distal to transcribed regions. The former shows highly variable methylation levels across samples, while the latter shows stable high methylation levels in normal tissues but severe hypomethylation in tumors. We further showed that rDNA methylation profiles in plasma cell-free DNA could be used as a biomarker for cancer detection. It shows good performances on public datasets, including colorectal cancer [area under the curve (AUC) = 0.85], lung cancer (AUC = 0.84), hepatocellular carcinoma (AUC = 0.91) and in-house generated hepatocellular carcinoma dataset (AUC = 0.96) even at low genome coverage (<1×). Taken together, these findings broaden our understanding of rDNA regulation and suggest the potential utility of rDNA methylation features as disease biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.