Introduction Carbapenem-resistant Klebsiella pneumoniae (CRKP) has been widespread in coastal cities of eastern China since 2009. However, how CRKP spreads and evolves in southwest China is unclear. Aim We investigated the genetic characteristics and dissemination mechanisms of carbapenemase genes in forty-one non-repetitive CRKP isolates collected from a southwest hospital, Kunming, Yunnan, during 2010–2013. Methodology Drug susceptibilities were analyzed by using VITEK 2 compact system. Genetic relationships were ascertained based on multilocus sequence typing (MLST) and Pulsed-field gel electrophoresis (PFGE) analysis. Genetic backgrounds of bla KPC-2 and bla NDM-1 were revealed by DNA walking and high-throughput sequencing. Results All isolates were highly resistant to common antibiotics except for tigecycline. In total, 34 bla KPC-2 , 3 bla NDM-1 , 1 bla IMP-4 and 3 bla IMP-26 genes were identified and KP67 plasmid 1 co-harbored bla NDM-1 and bla IMP-26 . Five sequence types, namely ST11, ST290, ST340, ST395 and ST437, were recognized by MLST. Surprisingly, bla KPC-2 was only detected in ST11 strains. We described a clonal dissemination of fosA3 -positive IncR-IncF33:A-:B- multireplicon plasmid carrying the gene cassettes IS 26 -ΔTn 3 -IS Kpn27-bla KPC-2 -ΔIS Kpn6-korC-klcA -Δ repB -Tn 1721 in all ST11 isolates. Three bla NDM-1 positive isolates belonged to three different ST types and their bla NDM-1 genetic backgrounds were also distinct. Interestingly, the flanking regions of bla NDM-1 in KP67 and KP72 were duplicated into one to five copies in a form of tandem repeat by the transposition of IS 91 like element. The bla NDM-1 of KP82 was carried on a common IncX3 plasmid. Conclusion This study described the early epidemiological characteristics of bla KPC-2 / bla NDM-1 -carrying CRKP, and reported a new tandem repeat pattern of bla NDM-1 cluster in Yunnan. These findings extend our knowledge on the carbapenemase gene evolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.