Dynamic treatment recommendation systems based on large-scale electronic health records (EHRs) become a key to successfully improve practical clinical outcomes. Prior relevant studies recommend treatments either use supervised learning (e.g. matching the indicator signal which denotes doctor prescriptions), or reinforcement learning (e.g. maximizing evaluation signal which indicates cumulative reward from survival rates). However, none of these studies have considered to combine the benefits of supervised learning and reinforcement learning. In this paper, we propose Supervised Reinforcement Learning with Recurrent Neural Network (SRL-RNN), which fuses them into a synergistic learning framework. Specifically, SRL-RNN applies an off-policy actor-critic framework to handle complex relations among multiple medications, diseases and individual characteristics. The "actor" in the framework is adjusted by both the indicator signal and evaluation signal to ensure effective prescription and low mortality. RNN is further utilized to solve the Partially-Observed Markov Decision Process (POMDP) problem due to the lack of fully observed states in real world applications. Experiments on the publicly real-world dataset, i.e., MIMIC-3, illustrate that our model can reduce the estimated mortality, while providing promising accuracy in matching doctors' prescriptions.
This paper provides a review of the solid-liquid phase change materials (PCMs) for latent heat thermal energy storage (LHTES). The commonly used solid-liquid PCMs and their thermal properties are summarized here firstly. Two major drawbacks that seriously limit the application of PCMs in an LHTES system, that is, low thermal conductivity and liquid leakage, are discussed. Various methods for enhancing the thermal conductivity and heat transfer of solid-liquid PCMs are explained. Previous studies regarding formstable composite PCMs and microencapsulated PCMs are also presented. Furthermore, applications of the solid-liquid PCMs used in LHTES and thermal management systems are introduced and analyzed. Finally, future outlooks and research topics are proposed.
Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.