Key PointsQuestionWhat is the effect of convalescent plasma therapy added to standard treatment, compared with standard treatment alone, on clinical outcomes in patients with severe or life-threatening coronavirus disease 2019 (COVID-19)?FindingIn this randomized clinical trial that included 103 patients and was terminated early, the hazard ratio for time to clinical improvement within 28 days in the convalescent plasma group vs the standard treatment group was 1.40 and was not statistically significant.MeaningAmong patients with severe or life-threatening COVID-19, convalescent plasma therapy added to standard treatment did not significantly improve the time to clinical improvement within 28 days, although the trial was terminated early and may have been underpowered to detect a clinically important difference.
PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a lipid phosphatase that counteracts the function of phosphatidylinositol-3 kinase (PI3K). Loss of function of PTEN results in constitutive activation of AKT and downstream effectors and correlates with many human cancers, as well as various brain disorders, including macrocephaly, seizures, Lhermitte–Duclos disease, and autism. We previously generated a conditional Pten knock-out mouse line with Pten loss in limited postmitotic neurons in the cortex and hippocampus. Pten-null neurons developed neuronal hypertrophy and loss of neuronal polarity. The mutant mice exhibited macrocephaly and behavioral abnormalities reminiscent of certain features of human autism. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1), can prevent and reverse neuronal hypertrophy, resulting in the amelioration of a subset of PTEN-associated abnormal behaviors, providing evidence that the mTORC1 pathway downstream of PTEN is critical for this complex phenotype.
Background-The incidence of thyroid cancer is rising steadily because of overdiagnosis and overtreatment conferred by widespread use of sensitive imaging techniques for screening. This overall incidence growth is especially driven by increased diagnosis of indolent and welldifferentiated papillary subtype and early-stage thyroid cancer, whereas the incidence of advancedstage thyroid cancer has increased marginally. Thyroid ultrasound is frequently used to diagnose thyroid cancer. The aim of this study was to use deep convolutional neural network (DCNN) models to improve the diagnostic accuracy of thyroid cancer by analysing sonographic imaging data from clinical ultrasounds.Methods-We did a retrospective, multicohort, diagnostic study using ultrasound images sets from three hospitals in China. We developed and trained the DCNN model on the training set, 131 731 ultrasound images from 17 627 patients with thyroid cancer and 180 668 images from 25 325 controls from the thyroid imaging database at Tianjin Cancer Hospital. Clinical diagnosis of the training set was made by 16 radiologists from Tianjin Cancer Hospital. Images from anatomical sites that were judged as not having cancer were excluded from the training set and only individuals with suspected thyroid cancer underwent pathological examination to confirm diagnosis. The model's diagnostic performance was validated in an internal validation set from Tianjin Cancer Hospital (8606 images from 1118 patients) and two external datasets in China (the
Lipocalin 2 (LCN2; also known as NGAL) is a secreted glycoprotein and its elevated expression has been observed in breast cancers. However, the importance of LCN2 in breast tumorigenesis is unclear. Here, we employed a spontaneous mammary tumor mouse model showing that MMTV-ErbB2 (V664E) mice lacking mouse LCN2 had significantly delayed mammary tumor formation and metastasis with reduced matrix metalloproteinase-9 activity in the blood. LCN2 expression is upregulated by HER2/phosphoinositide 3-kinase/ AKT/NF-κB pathway. Decreasing LCN2 expression significantly reduced the invasion and migration ability of HER2 + breast cancer cells. Furthermore, injecting an anti-mouse LCN2 antibody into mice bearing established murine breast tumors resulted in significant blockage of lung metastasis. Our findings indicate that LCN2 is a critical factor in enhancing breast tumor formation and progression possibly in part by stabilizing matrix metalloproteinase-9. Our results suggest that inhibition of LCN2 function by an inhibitory monoclonal antibody has potential for breast cancer therapy, particularly by interfering with metastasis in aggressive types of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.