All optical switching (AOS) of magnetization exhibits a high potential for ultrafast and energy-efficient memory applications. Many works have been carried out in the area of AOS, including its observation in a wide variety of ferromagnetic or ferrimagnetic materials, and the exploration of the parameters for the achievements of AOS such as the laser fluence and helicity, and duration of laser pulses. A large majority of all optical helicity-independent single-shot switching (AO-HIS) has been observed in Gd-based rare-earth transition-metal ferrimagnets. It is then necessary to explore the unique role of Gd in AO-HIS mechanism, compared with other rare-earth elements. Here, we engineered Gd 1−x−y Tb y Co x alloys and investigated the influence of the Tb concentration on the magnetization dynamics via static Kerr microscope and time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. The ultrafast demagnetization time at low fluence is found to be independent of Tb concentration, while both the range of laser fluence and pulse duration allowing for AO-HIS becomes narrower with increasing the Tb concentration. The TR-MOKE signal K / K_sat ∼ 10 ps after the laser pulse excitation decreases with increasing either the Tb concentration or the pulse duration. The fact that AO-HIS is prohibited by increasing the Tb content is explained by considering a larger damping for Tb than Gd in atomistic simulations. Our results are well explained by the fact that angular momentum can be transferred from Gd to Co resulting in the magnetization switching, whereas for Tb it is dissipated through the lattice due to the large spin-orbit coupling, instead of being transferred between Tb and Co.
Manipulating magnetic skyrmions by means of a femtosecond (fs) laser pulse has attracted great interest due to their promising applications in efficient information-storage devices with ultralow energy consumption. However, the mechanism underlying the creation of skyrmions induced by an fs laser is still lacking. As a result, a key challenge is to reveal the pathway for the massive reorientation of magnetization from trivial to nontrivial topological states. Here, we studied a series of ferrimagnetic CoHo alloys and investigated the effect of a single laser pulse on the magnetic states. Thanks to the time-resolved magneto-optical Kerr effect and imaging techniques, we demonstrate that the laser-induced phase transitions from single domains into a topological skyrmion phase are mediated by the transient in-plane magnetization state, in real time and space domains, respectively. Combining experiments and micromagnetic simulations, we propose a two-step process for creating skyrmions through laser pulse irradiation: (i) the electron temperature enhancement induces a spin reorientation transition on a picosecond (ps) timescale due to the suppression of perpendicular magnetic anisotropy (PMA) and (ii) the PMA slowly restores, accompanied by out-of-plane magnetization recovery, leading to the generation of skyrmions with the help of spin fluctuations. This work provides a route to control skyrmion patterns using an fs laser, thereby establishing the foundation for further exploration of topological magnetism at ultrafast timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.