In flowering plants, male fertility depends on proper cell differentiation in the anther. However, relatively little is known about the genes that regulate anther cell differentiation and function. Here, we report the analysis of a new Arabidopsis male sterile mutant, dysfunctional tapetum1 (dyt1). The dyt1 mutant exhibits abnormal anther morphology beginning at anther stage 4, with tapetal cells that have excess and/or enlarged vacuoles and lack the densely stained cytoplasm typical of normal tapetal cells. The mutant meiocytes are able to complete meiosis I, but they do not have a thick callose wall; they often fail to complete meiotic cytokinesis and eventually collapse. DYT1 encodes a putative bHLH transcription factor and is strongly expressed in the tapetum from late anther stage 5 to early stage 6, and at a lower level in meiocytes. In addition, the level of DYT1 mRNA is reduced in the sporocyteless/nozzle (spl/nzz) and excess microsporocytes1/extra sporogenous cell (ems1/exs) mutants; together with the mutant phenotypes, this suggests that DYT1 acts downstream of SPL/NZZ and EMS1/EXS. RT-PCR results showed that the expression levels of many tapetum-preferential genes are reduced significantly in the dyt1 mutant, indicating that DYT1 is important for the expression of tapetum genes. Our results support the hypothesis that DYT1 is a crucial component of a genetic network that controls anther development and function.
SummaryIn flowering plants, the anther contains highly specialized reproductive and somatic cells that are required for male fertility. Genetic studies have uncovered several genes that are important for anther development. However, little information is available regarding most genes active during anther development, including possible relationships between these genes and genetically defined regulators. In Arabidopsis, two previously isolated male-sterile mutants display dramatically altered anther cell differentiation patterns. The sporocyteless (spl)/nozzle (nzz) mutant is defective in the differentiation of primary sporogenous cells into microsporocytes, and does not properly form the anther wall. The excess microsporocytes1 (ems1)/ extrasporogenous cells (exs) mutants produce excess microsporocytes at the expense of the tapetum. To gain additional insights into microsporocyte and tapetum differentiation and to uncover potential genetic interactions, expression profiles were compared between wild-type anthers (stage 4-6) and those of the spl or ems1 mutants. A total of 1954 genes were found to be differentially expressed in the ems1 and/or spl anthers, and these were grouped into 14 co-expression clusters. The presence of genes with known and predicted functions in specific clusters suggests potential functions for other genes in the same cluster. To obtain clues about possible co-regulation within co-expression clusters, we searched for shared cisregulatory motifs in putative promoter regions. Our analyses were combined with data from previous studies to develop a model of the anther gene regulatory network. This model includes hypotheses that can be tested experimentally to gain further understanding of the mechanisms controlling anther development.
BackgroundCRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice.ResultsWe optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize.ConclusionsThe examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0289-2) contains supplementary material, which is available to authorized users.
Potassium (K+) influx into pollen tubes via K+ transporters is essential for pollen tube growth; however, the mechanism by which K+ transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca2+-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca2+-dependent regulation of the inward K+ (K+ in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K+ in currents of pollen tube protoplasts were inhibited by elevated [Ca2+]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca2+-dependent inhibition of K+ in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K+ in channel is the main contributor to pollen tube K+ in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca2+-dependent inhibition of K+ in channels and participate in the regulation of pollen tube growth in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.