Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials’ physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm−2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.
Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.
Employing strong metal-support interaction (SMSI) effect for promoting the catalyst’s activity toward oxygen reduction reaction (ORR) is promising due to electronic structure optimization and high utilization efficiency of platinum group...
Oxygen reduction reaction (ORR) is an electrochemical reaction in which dissolved oxygen in an electrolyte is reduced to OH − /H 2 O when receiving electrons. This reaction plays a crucial role in shaping the efficiency of both metal-air batteries and fuel cells, and precious metals are the dominant catalysts carrying out the ORR in their cathodes. However, how to manipulate the electronic structure of precious metals as active sites to further promote ORR performance and maximize the utilization rate is still under development. Metal oxide serves as suitable and promising support that can strongly interact with precious metals for both activity and durability enhancement. Herein, we present recent research updates on strong precious metal-metal oxide interaction (SPMMOI) utilized in ORR. We start by introducing the background of ORR, the issues to be solved, and its practical applications followed by a thorough discussion of the reaction mechanism and comprehensive evaluation protocols of performance. We then provide a complete understanding of the working principle of SPMMOI and highlight the related advances. Finally, we summarize the merits of the precious metal-metal oxide system and propose the research direction as well as some urgent problems to be addressed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.