Dynamic covalent chemistry (DCvC) has been strongly integrated into diverse research fields, and has enabled easy access to a variety of combinatorial libraries, 2-D macrocycles, and 3-D molecular cages that target many important applications, such as drug discovery, biotechnology, molecular separation, light harvesting, etc. DCvC relies on the reversible formation and breaking of rather strong covalent bonding within molecules. Therefore it combines the error-correction capability of supramolecular chemistry and the robustness of covalent bonding. Compared to those supramolecular interactions, dynamic covalent reactions usually have slower kinetics and require the assistance of catalysts to achieve rapid equilibrium. Although the scope of dynamic covalent reactions is rapidly expanding, the reversible reactions suitable for DCvC are still very limited. The identification and development of new dynamic reactions and catalysts would be critical for the further advancement of DCvC. This review covers the recent development of dynamic covalent reactions as well as their applications.
as dynamers by Lehn, [ 25,26 ] are stimuli-responsive polymers, most notably exhibiting macroscopic responses to changes in pH. [ 27,28 ] Several imine-containing polymers have been demonstrated, including pH-responsive hydrogels [ 20 ] and a working organic light-emitting diode (OLED). [ 23 ] However, the potential of polyimines as malleable, mechanically resilient polymeric materials, as well as their processability, have remained largely unexplored. We envision that imine-linked polymers can take malleability in covalent network polymers to the next level of simplicity, affordability and practicality. Herein, we present the fi rst catalyst-free malleable polyimine which fundamentally behaves like a classic thermoset at ambient conditions yet can be reprocessed by application of either heat or water. This means that green, room temperature processing conditions are accessible for this important class of functional polymers.A crosslinked polyimine network was prepared from commercially available monomers: terephthaldehyde, diethylene triamine, and triethylene tetramine ( Figure 1 a). A polyimine fi lm was obtained by simply mixing the three above components in a 3:0.9:1.4 stoichiometry in the absence of any catalyst in a mixture of organic solvents (1:1:8, v/v/v, CH 2 Cl 2 /EtOAc/EtOH), then allowing the volatiles to evaporate slowly. Alternatively, the polymer can be obtained as a powder by using ethyl acetate as the only solvent. The polymerization reaction was confi rmed by infrared spectroscopy, which revealed that aldehyde end groups were consumed while imine linkages were formed ( Figure S2, Supporting Information). The resulting translucent polymer is hard and glassy at room temperature ( T g is 56 °C) ( Figure S1, Supporting Information) and has a modulus of near 1 GPa with stress at break of 40 MPa ( Figure S3, Supporting Information).The time and temperature dependent relaxation modulus of the polyimine fi lm was tested to characterize the heat-induced malleability. Figure 1 b depicts the results of a series of relaxation tests over a wide range of temperatures (50-127.5 °C) on a double logarithmic plot. Specifi cally, at 80 °C, the bond exchange reaction is initiated and the normalized relaxation modulus is decreased from 1 to 0.11 within 30 min, indicating an 89% release of the internal stress within the thermoset polymer. By shifting each relaxation curve horizontally with respect to a reference temperature at 80 °C, a master relaxation curve was constructed (Figure 1 c), which indicates the stress relaxation of the polyimine follows the classic time-temperature superposition (TTSP) behavior. The plot of time-temperature shift factors as a function of temperature (Figure 1 d) shows that the polyimine's stress-relaxation behavior exhibits Arrheniuslike temperature dependence. Using the extrapolation, we calculated that while it takes 30 min for the stress to be relaxed by ca. 90% at 80 °C, the same process would take ca. 480 days at room temperature. The polyimine is thus the fi rst reported
Covalent organic frameworks (COFs) with well-defined and customizable pore structures are promising templates for the synthesis of nanomaterials with controllable sizes and dispersity. Herein, a thioether-containing COF has been rationally designed and used for the confined growth of ultrafine metal nanoparticles (NPs). Pt or Pd nanoparticles (Pt NPs and Pd NPs) immobilized inside the cavity of the COF material have been successfully prepared at a high loading with a narrow size distribution (1.7 ± 0.2 nm). We found the crystallinity of the COF support and the presence of thioether groups inside the cavities are critical for the size-controlled synthesis of ultrafine NPs. The as-prepared COF-supported ultrafine Pt NPs and Pd NPs show excellent catalytic activity respectively in nitrophenol reduction and Suzuki-Miyaura coupling reaction under mild conditions and low catalyst loading. More importantly, they are highly stable and easily recycled and reused without loss of their catalytic activities. Such COF-supported size-controlled synthesis of nanoparticles will open a new frontier on design and preparation of metal NP@COF composite materials for various potential applications, such as catalysis and development of optical and electronic materials.
Carbon-fiber reinforced composites are prepared using catalyst-free malleable polyimine networks as binders. An energy neutral closed-loop recycling process has been developed, enabling recovery of 100% of the imine components and carbon fibers in their original form. Polyimine films made using >21% recycled content exhibit no loss of mechanical performance, therefore indicating all of the thermoset composite material can be recycled and reused for the same purpose.
Novel electronic skin is rehealable and 100% recyclable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.