Dynamic covalent chemistry (DCvC) has been strongly integrated into diverse research fields, and has enabled easy access to a variety of combinatorial libraries, 2-D macrocycles, and 3-D molecular cages that target many important applications, such as drug discovery, biotechnology, molecular separation, light harvesting, etc. DCvC relies on the reversible formation and breaking of rather strong covalent bonding within molecules. Therefore it combines the error-correction capability of supramolecular chemistry and the robustness of covalent bonding. Compared to those supramolecular interactions, dynamic covalent reactions usually have slower kinetics and require the assistance of catalysts to achieve rapid equilibrium. Although the scope of dynamic covalent reactions is rapidly expanding, the reversible reactions suitable for DCvC are still very limited. The identification and development of new dynamic reactions and catalysts would be critical for the further advancement of DCvC. This review covers the recent development of dynamic covalent reactions as well as their applications.
Metallacyclopentadienes, which possess two M-C(sp) bonds and feature the structure of M(C[upper bond 1 start]R[double bond, length as m-dash]CR-CR[double bond, length as m-dash]C[upper bond 1 end]R), are an important class of five-membered metallacycles. They are considered as both reactive intermediates in the stoichiometric and catalytic transformations of organic molecules and useful precursors to main group element compounds, and have received considerable attention in organometallic chemistry, coordination chemistry and synthetic organic chemistry over the past six decades because of their unique metallacyclic structure. This review comprehensively presents the synthesis, structure and reactivity of the s-, p-, d- and f-block metallacyclopentadienes distributed in the whole periodic table. In addition, their application in synthetic organic chemistry and polymer chemistry is summarized. This review aims to be beneficial for the design and synthesis of novel metallacyclopentadienes, and for promoting the rapid development of metallacyclic chemistry.
Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.