Large scale epitaxial growth and transfer of monolayer MoS has attracted great attention in recent years. Here, we report the wafer-scale epitaxial growth of highly oriented continuous and uniform monolayer MoS films on single-crystalline sapphire wafers by chemical vapor deposition (CVD) method. The epitaxial film is of high quality and stitched by many 0°, 60° domains and 60°-domain boundaries. Moreover, such wafer-scale monolayer MoS films can be transferred and stacked by a simple stamp-transfer process, and the substrate is reusable for subsequent growth. Our progress would facilitate the scalable fabrication of various electronic, valleytronic, and optoelectronic devices for practical applications.
Recently, 2D materials exhibit great potential for humidity sensing applications due to the fact that almost all atoms are at the surface. Therefore, the quality of the material surface becomes the key point for sensitive perception. This study reports an integrated, highly sensitive humidity sensors array based on large-area, uniform single-layer molybdenum disulfide with an ultraclean surface. Device mobilities and on/off ratios decrease linearly with the relative humidity varying from 0% to 35%, leading to a high sensitivity of more than 10 . The reversible water physisorption process leads to short response and decay times. In addition, the device array on a flexible substrate shows stable performance, suggesting great potential in future noncontact interface localization applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.