Dilated cardiomyopathy (DCM) represents the most prevalent form of primary cardiomyopathy, and is the most common reason for heart transplantation and a major cause of congestive heart failure. Aggregating evidence demonstrates that genetic defects are associated with DCM, and a great number of mutations in >50 genes have been linked to DCM. However, DCM is a genetically heterogeneous disorder and the genetic components underpinning DCM in a significant proportion of patients remain unknown. In the present study, the coding exons and flanking exon‑intron boundaries of the T-Box 5 (TBX5) gene, which encodes a T‑box transcription factor required for normal cardiac development, were sequenced in 146 unrelated patients with sporadic DCM. The functional characteristics of the mutant TBX5 were assayed in contrast to its wild‑type counterpart by using a dual‑luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.A143T, was identified in a patient with sporadic DCM. The missense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily among species. Biological analyses revealed that the A143T mutation of TBX5 was associated with significantly decreased transcriptional activity on the promoter of the target gene atrial natriuretic factor (ANF), when compared to its wild‑type counterpart. Furthermore, the A143T mutation abolished the synergistic activation of the ANF promoter between TBX5 and GATA binding protein 4 (GATA4), another crucial transcriptional factor for heart development. To the best of our knowledge, this is the first report on the association of a TBX5 loss‑of‑function mutation with an enhanced susceptibility to sporadic DCM, providing novel insight into the molecular mechanisms of the pathogenesis of DCM and suggesting potential implications for the prenatal prophylaxis and personalized treatment of this commonest primary myocardial disease.
Background/Aims: The imbalance of Treg/Th17 cells plays important role in the pathogenesis of dilated cardiomyopathy (DCM). Response gene to complement (RGC)-32 is a cell cycle regulator that plays an important role in cell proliferation. We evaluated whether the upregulation of RGC-32 was implicated in the homeostasis of Treg/Th17 cells in DCM. Methods:The levels of plasma RGC-32, IL-17 and TGF-β1, and the frequencies of circulating CD4 + RGC-32 + T cells, Th17 and Treg cells in patients with DCM were determined by Cytokinespecific sandwich ELISA and the flow cytometer (FCM), respectively. Results: A significant elevation of plasma RGC-32 in patients with DCM compared with healthy control (HC) subjects was observed. This upregulation was associated with an increase in frequency of Th17 and a decrease in frequency of Treg cells. To further assessed the role of RGC-32, we investigated the effects of RGC-32 up-or down-regulation on frequencies of Th17 and Treg cells in peripheral blood mononuclear cells (PBMCs) from subjects. Importantly, overexpression of RGC-32 was accompanied by an augmentation of Th17 and a reduction of Treg expression. Conclusion: In summary, our study demonstrated the up-regulation of RGC-32 contributed to the imbalance of Treg/Th17 cells in patients with DCM.
Background: Anti-tuberculosis drug-induced hepatic injury (ATDH) lacks specific diagnostic markers.The characteristics of gene polymorphisms have been preliminarily used for the risk classification of ATDH, and the activation of Pregnane X receptor/aminole-vulinic synthase-1/forkhead box O1 (PXR/ALAS1/ FOXO1) axis is closely related to ATDH. Therefore, we consider combining general clinical features of the electronic medical record, laboratory indications, and genetic features of key genes in this axis for predictive model construction to help early clinical diagnosis and treatment. Methods:The general characteristics derived from the Hospital Information System (HIS) medical record system, the biochemical tests and hematology tests were detected by Roche automatic biochemical immunoassay analyzer cobas8000 and Sysmex automatic hemocytometer XE2100. The single nucleotide polymorphisms (SNPs) genotyping work was conducted with a custom-designed 48-plex SNP scan ® TM Kit. A total of 746 cases were included which were divided into training set and validation set according to the ratio of 3:2 randomly. Taking the occurrence of confirmed ATDH as the outcome variable, lasso regression and logistic regression were used to identify the predictors preliminarily. alanine aminotransferase, aspartate aminotransferase, monocyte, uric acid, albumin, fever, the polymorphisms of rs4435111 (FOXO1) and rs3814055 (PXR) were chosen from all variables to combine the predictive model. The goodness of fit, predictive efficacy, discrimination, and consistency, and clinical decision curve analysis was used to assess the clinical applicability of the models.Results: The best model had a discriminant efficacy C-index of 0.8164, a sensitivity of 34.25%, specificity of 97.99%, a positive predictive value of 78.13% and negative predictive value of 87.69%, the two-tailed value of Spiegelhalter Z test of consistency test S:P =0.896, maximum absolute difference Emax =0.147, and average absolute difference Eave =0.017. In the validation set, performance was close. The clinical decision curve showed the clinical applicability of the prediction model when the prediction risk threshold was between 0.1 and 0.8.
Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.