We propose a level set based variational approach that incorporates shape priors into Chan-Vese's model [3] for the shape prior segmentation problem. In our model, besides the level set function for segmentation, as in Cremers' work [5], we introduce another labelling level set function to indicate the regions on which the prior shape should be compared. Our model can segment an object, whose shape is similar to the given prior shape, from a background where there are several objects. Moreover, we provide a proof for a fast solution principle, which was mentioned [7] and similar to the one proposed in [19], for minimizing Chan-Vese's segmentation model without length term. We extend the principle to the minimization of our prescribed functionals.
In this paper, we propose a novel low dimensional manifold model (LDMM) and apply it to some image processing problems. LDMM is based on the fact that the patch manifolds of many natural images have low dimensional structure. Based on this fact, the dimension of the patch manifold is used as a regularization to recover the image. The key step in LDMM is to solve a Laplace-Beltrami equation over a point cloud which is solved by the point integral method. The point integral method enforces the sample point constraints correctly and gives better results than the standard graph Laplacian. Numerical simulations in image denoising, inpainting and super-resolution problems show that LDMM is a powerful method in image processing.
We propose a new variational model for image denoising, which employs the L 1-norm of the mean curvature of the image surface (x, f (x)) of a given image f : Ω → R. Besides eliminating noise and preserving edges of objects efficiently, our model can keep corners of objects and greyscale intensity contrasts of images and also remove the staircase effect. In this paper, we analytically study the proposed model and justify why our model can preserve object corners and image contrasts. We apply the proposed model to the denoising of curves and plane images, and also compare the results with those obtained by using the classical Rudin-Osher-Fatemi model [Phys. D, 60 (1992), pp. 259-268].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.