Dose--response experiments are crucial in biomedical studies. There are usually multiple objectives in such experiments and among the goals is the estimation of several percentiles on the dose--response curve. Here we present the first non-parametric adaptive design approach to estimate several percentiles simultaneously via generalized Pólya urns. Theoretical properties of these designs are investigated and their performance is gaged by the locally compound optimal designs. As an example, we re-investigated a psychophysical experiment where one of the goals was to estimate the three quartiles. We show that these multiple-objective adaptive designs are more efficient than the original single-objective adaptive design targeting the median only. We also show that urn designs which target the optimal designs are slightly more efficient than those which target the desired percentiles directly. Guidelines are given as to when to use which type of design. Overall we are pleased with the efficiency results and hope compound adaptive designs proposed in this work or their variants may prove to be a viable non-parametric alternative in multiple-objective dose--response studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.