A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging.
Atomic clocks based on laser-cooled atoms are widely used as primary frequency standards. Deploying such cold atom clocks (CACs) in space is foreseen to have many applications. Here we present tests of a CAC operating in space. In orbital microgravity, the atoms are cooled, trapped, launched, and finally detected after being interrogated by a microwave field using the Ramsey method. Perturbing influences from the orbital environment on the atoms such as varying magnetic fields and the passage of the spacecraft through Earth’s radiation belt are also controlled and mitigated. With appropriate parameters settings, closed-loop locking of the CAC is realized in orbit and an estimated short-term frequency stability close to 3.0 × 10−13τ−1/2 has been attained. The demonstration of the long-term operation of cold atom clock in orbit opens possibility on the applications of space-based cold atom sensors.
Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipid-laden plaques, as it provides simultaneous morphological and lipid-specific chemical information of an artery wall. Real-time imaging and display at video-rate speed are critical for clinical utility of the IVPA-US imaging technology. Here, we demonstrate a portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter size, differentiated A-line strategy, and real-time image processing and display algorithms. Spatial resolution, chemical specificity, and capability for imaging highly dynamic objects were evaluated by phantoms to characterize system performance. An imaging speed of 16 frames per second was determined to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology. Thus, this high-speed IVPA-US imaging system presents significant advances in the translational intravascular and other endoscopic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.