Static component (SC) generation of guided waves (GWs), which combines the high sensitivity of acoustic nonlinearity to micro-damage and low attenuative effect, has great potential for damage assessment in large composite structures. The present work explores the use of SC generation of GWs for assessing damages in carbon fiber reinforced polymer (CFRP) composite laminates. The features including mode, waveform, and cumulative effect of the generated SC in composites are numerically investigated by three-dimensional finite element modeling and simulation. A dynamic displacement measurement method based on piezoelectric transducers is accordingly proposed and experimentally verified. The cumulative SC pulse generated from primary GW tone-burst with a finite duration, is observed and verified numerically and experimentally. It is found that the magnitude of the generated SC pulse is linearly proportional to the quadratic material nonlinearity. Experimental results demonstrate that the generated SC pulse of GW under group velocity matching condition, is an effective means to assess the hygrothermal damage and low-velocity impact damage in CFRP composite plates. The performed experimental examination validates the feasibility of the proposed approach for damage assessment in CFRP composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.