Colorectal cancer (CRC) displays a predilection for metastasis to liver. Although stromal cell-derived factor-1 (SDF-1)/CXCR4 plays an important role in the liver metastasis, the molecular mechanism still remains obscure. We previously reported that integrin αvβ6 was implicated in the progression of CRC. However, no data are currently available on the cross talk between CXCR4 and αvβ6. In the present study, we first demonstrated the cross talk between CXCR4 and αvβ6 and their role in liver metastasis of CRC. We analyzed 159 human CRC samples and found that expression of CXCR4 and αvβ6 was significantly associated with liver metastasis, and interestingly expression of αvβ6 significantly correlated with expression of CXCR4. Both CXCR4 and αvβ6 were highly expressed in metastatic CRC cell lines HT-29 and WiDr, whereas both of them were exiguous in non-metastatic cell line Caco-2. Furthermore, inhibition of αvβ6 significantly decreased SDF-1α-induced cell migration in vitro. SDF-1/CXCR4 could upregulate αvβ6 expression through phosphorylation of ERK and activation of Ets-1 transcription factor. In conclusion, we demonstrate that SDF-1/CXCR4 induces directional migration and liver metastasis of CRC cells by upregulating αvβ6 through ERK/Ets-1 pathway. These data support combined inhibition of CXCR4 and αvβ6 to prevent development of liver metastasis of CRC.
Tumor microenvironment (TME) is the cellular environment in which tumor exists, and it contributes to tumor formation and progression. The TME is composed of tumor cells, stromal cells, cytokines, and chemotactic factors of which fibroblasts are the main cellular components. In our present study, we found that colorectal cancer (CRC) cells expressing integrin αvβ6 clearly could induce morphological changes in inactive fibroblasts and increased the expression of activated fibroblast markers such as α-smooth muscle actin (α-SMA) and fibroblast-activating protein (FAP). Those activated fibroblasts in the TME are called cancer-associated fibroblasts (CAFs). In order to investigate the mechanism by which CRC cells expressing integrin αvβ6 activated CAFs, a series of assays have been carried out in the follow-up. We found that CRC cells could secrete inactive transforming growth factor β (TGF-β); however, integrin αvβ6 activated TGF-β, which subsequently activated fibroblasts. This process was disrupted by knockdown of integrin αvβ6. In contrast, activated fibroblasts could promote CRC cell invasion. In particular, the strengthening effect on expression of integrin αvβ6 in colon cancer cells was obvious. Additionally, we found that CAFs could secrete stromal cell-derived factor-1 (SDF-1) and promote CRC cell metastasis in distant organs via the SDF-1/C–X–C chemokine receptor type 4 (CXCR4) axis. Taken together, we assumed that CRC cells and CAFs activated one another and worked together to promote cancer progression, with integrin αvβ6 playing a role in the bi-directional regulation of these cells. Hence, integrin αvβ6 may serve as a therapeutic target for the future CRC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.