In this paper, for the hydrogen abstraction reaction of HCHO by OH radicals assisted by water, formic acid, or sulfur acid, the possible reaction mechanisms and kinetics have been investigated theoretically using quantum chemistry methods and transition-state theory. The potential energy surfaces calculated at the CCSD(T)/6-311++G(df,pd)//MP2(full)/6-311++G(df,pd) levels of theory reveal that, due to the formation of strong hydrogen bond(s), the relative energies of the transition states involving catalyst are significantly reduced compared to that reaction without catalyst. However, the kinetics calculations show that the rate constants are smaller by about 3, 9, or 10 orders of magnitude for water, formic acid, or sulfur acid assisted reactions than that uncatalyzed reaction, respectively. Consequently, none of the water, formic acid, or sulfur acid can accelerate the title reaction in the atmosphere.
Ternary strategies show over 16% efficiencies with increased current/voltage owing to complementary absorption/aligned energy level contributions. However, poor understanding of how the guest components tune the active layer structures still makes rational selection of material systems challenging. In this study, two phthalimide based ultrawide bandgap polymer donor guests are synthesized. Parallel energies between the highest occupied molecular orbitals of host and guest polymers are achieved via incorporating selnophene on the guest polymer. Solid‐state 19F magic angle spinning nuclear magnetic spectroscopy, graze‐incidence wide‐angle X‐ray diffraction, elemental transmission electron microscopy mapping, and transient absorption spectroscopy are combined to characterize the active layer structures. Formation of the individual guest phases selectively improves the structural order of donor and acceptor phase. The increased electron mobility in combination with the presence of the additional paths made by the guest not only minimizes the influence on charge generation and transport of the host system but also contributes to increasing the overall current generation. Therefore, phthalimide based polymers can be potential candidates that enable the simultaneous increase of open‐circuit voltage and short‐circuit current‐density via fine‐tuning energy levels and the formation of additional paths for enhancing current generation in parallel‐like multicomponent organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.