Motivation
Food-derived bioactive peptides (FBPs) have demonstrated their significance in pharmaceuticals, diets, and nutraceuticals, benefiting public health and global ecology. While significant efforts have been made to discover FBPs and to elucidate the underlying bioactivity mechanisms, there is lack of a systemic study of sequence-structure-activity relationship of FBPs in a large dataset.
Results
Here, we construct a database of food-derived bioactive peptides (DFBP), containing a total of 6276 peptide entries in 31 types from different sources. Further, we develop a series of analysis tools for function discovery/repurposing, traceability, multifunctional bioactive exploration, and physiochemical property assessment of peptides. Finally, we apply this database and data-mining techniques to discover new FBPs as potential drugs for cardiovascular diseases. The DFBP serves as a useful platform for not only the fundamental understanding of sequence-structure-activity of FBPs, but also the design, discovery, and repurposing of peptide-based drugs, vaccines, materials, and food ingredients.
Availability and implementation
DFBP service can be accessed freely via http://www.cqudfbp.net/.
Supplementary information
Supplementary data are available at Bioinformatics online.
Molecules with pleasant odors, unacceptable odors, and even serious toxicity are closely related to human social life. It is impractical to identify the odors of molecules in large quantities (particularly hazardous odors) using experimental methods. Computer-aided methods have currently attracted increasing attention for the prediction of molecular odors. Here, through models based on multilayer perceptron (MLP) and physicochemical descriptors (MLP-Des), MLP and molecular fingerprint, and convolutional neural network (CNN), we conduct the two-class prediction of odor/no odor, fruity/no odor, floral/no odor, and woody/no odor, and the multi-class prediction of fruity/flowery/woody/no odor on our newly refined molecular odor datasets. We show that three kinds of predictors can robustly predict molecular odors. The MLP-Des model not only exhibits the best prediction results (the AUC values are 0.99 and 0.86 for the two- and multi-classification models, respectively) but can also well reflect the characteristics of the structure–odor relationship of molecules. The CNN model takes 2D molecular images as input and can automatically extract the structural features related to molecular odors. The proposed models are of great help for the prediction of molecular odorants, understanding the underlying relationship between chemical structure and odor perception, and the discovery of new odorous and/or hazardous molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.