In recent years, sparse recovery-based space-time adaptive processing (SR-STAP) technique has exhibited excellent performance with insufficient samples. Sparse Bayesian learning algorithms have received considerable attention for their remarkable and reliable performance. Its implementation in large-scale radar systems is however hindered by the overwhelming computational load and slow convergence speed. This paper aims to address these drawbacks by proposing an improved iterative reweighted sparse Bayesian learning algorithm based on expansion-compression variance-components (ExCoV-IIR-MSBL). Firstly, a modified Bayesian probabilistic model for SR-STAP is introduced. Exploiting the intrinsic sparsity prior of the clutter, we divide the space-time coefficients into two parts: the significant part with nontrivial coefficients and the irrelevant part with small or zero coefficients. Meanwhile, we only assign independent hyperparameters to the coefficients in the significant part, while the remaining coefficients share a common hyperparameter. Then the generalized maximum likelihood (GML) criterion is adopted to classify the coefficients, ensuring both accuracy and efficiency. Hence, the parameter space in Bayesian inference will be significantly reduced, and the computational efficiency can be considerably promoted. Both theoretical analysis and numerical experiments validate that the proposed algorithm achieves superior performance with considerably improved computational efficiency in sample shortage scenarios.
Space-time adaptive processing (STAP) encounters severe performance degradation with insufficient training samples in inhomogeneous environments. Sparse Bayesian learning (SBL) algorithms have attracted extensive attention because of their robust and self-regularizing nature. In this study, a computationally efficient SBL STAP algorithm with adaptive Laplace prior is developed. Firstly, a hierarchical Bayesian model with adaptive Laplace prior for complex-value space-time snapshots (CALM-SBL) is formulated. Laplace prior enforces the sparsity more heavily than Gaussian, which achieves a better reconstruction of the clutter plus noise covariance matrix (CNCM). However, similar to other SBL-based algorithms, a large degree of freedom will bring a heavy burden to the real-time processing system. To overcome this drawback, an efficient localized reduced-dimension sparse recovery-based space-time adaptive processing (LRDSR-STAP) framework is proposed in this paper. By using a set of deeply weighted Doppler filters and exploiting prior knowledge of the clutter ridge, a novel localized reduced-dimension dictionary is constructed, and the computational load can be considerably reduced. Numerical experiments validate that the proposed method achieves better performance with significantly reduced computational complexity in limited snapshots scenarios. It can be found that the proposed LRDSR-CALM-STAP algorithm has the potential to be implemented in practical real-time processing systems.
Non‐sidelooking airborne radar encounters significant non‐stationary and heterogeneous clutter environments, resulting in a severe shortage of samples. Sparse recovery‐based space‐time adaptive processing (SR‐STAP) methods can achieve good clutter suppression performance with limited samples. Nonetheless, grid‐based SR‐STAP algorithms encounter off‐grid effects in non‐sidelooking arrays, which can severely degrade the clutter suppression performance. In this study, the authors propose a novel gridless SR‐STAP method in the continuous spatial‐temporal domain to address the issue of off‐grid effects. Inspired by the fact that sparse Bayesian learning (SBL) framework implicitly performs a structured covariance matrix estimation, the authors reparameterise its cost function to directly estimate the block‐Toeplitz structured matrix from the measurements in a gridless manner. Since the proposed cost function is non‐convex, we utilise a majorisation‐minimisation‐based iterative procedure to estimate the clutter covariance matrix. Finally, using the standard concept of semidefinite programming, the authors derive a convex gridless implementation of the SBL cost function for uniformly sampled radar systems. Extensive simulation experiments demonstrate the exceptional clutter suppression and target detection performance of the proposed algorithm.
Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly estimated clutter subspace is obtained using the subspace augment (SA) approach. The weight vector is then designed using the association between the dictionary matrix and the noise subspace, allowing the algorithm to penalise sparse coefficients democratically. Finally, in order to solve the subspace‐weighted mixed‐norm minimisation problem, we derive a fast algorithm based on the alternating direction multiplier method (ADMM) framework. The proposed algorithm does not require iteratively updating the weight vector in contrast to the iterative re‐weighted l1 ${l}_{1}$ (IRL1) algorithm. The simulation results demonstrate the effectiveness of the proposed algorithm in terms of computational efficiency and clutter suppression performance.
Detecting a moving target is an attractive topic in many fields, such as remote sensing. Space-time adaptive processing (STAP) plays a key role in detecting moving targets in strong clutter backgrounds for airborne early warning radar systems. However, STAP suffers serious clutter suppression performance loss when the number of training samples is insufficient due to the inhomogeneous clutter environment. In this article, an efficient sparse recovery STAP algorithm is proposed. First, inspired by the relationship between multiple sparse Bayesian learning (M-SBL) and subspace-based hybrid greedy algorithms, a new optimization objective function based on a subspace penalty is established. Second, the closed-form solution of each minimization step is obtained through the alternating minimization algorithm, which can guarantee the convergence of the algorithm. Finally, a restart strategy is used to adaptively update the support, which reduces the computational complexity. Simulation results show that the proposed algorithm has excellent performance in clutter suppression, convergence speed and running time with insufficient training samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.