Click-Through Rate (CTR) prediction plays an important role in many industrial applications, such as online advertising and recommender systems. How to capture users' dynamic and evolving interests from their behavior sequences remains a continuous research topic in the CTR prediction. However, most existing studies overlook the intrinsic structure of the sequences: the sequences are composed of sessions, where sessions are user behaviors separated by their occurring time. We observe that user behaviors are highly homogeneous in each session, and heterogeneous cross sessions. Based on this observation, we propose a novel CTR model named Deep Session Interest Network (DSIN) that leverages users' multiple historical sessions in their behavior sequences. We first use self-attention mechanism with bias encoding to extract users' interests in each session. Then we apply Bi-LSTM to model how users' interests evolve and interact among sessions. Finally, we employ the local activation unit to adaptively learn the influences of various session interests on the target item. Experiments are conducted on both advertising and production recommender datasets and DSIN outperforms other stateof-the-art models on both datasets.
Recommendation systems and computing advertisements have gradually entered the field of academic research from the field of commercial applications. Click-through rate prediction is one of the core research issues because the prediction accuracy affects the user experience and the revenue of merchants and platforms. Feature engineering is very important to improve click-through rate prediction. Traditional feature engineering heavily relies on peoples experience, and is difficult to construct a feature combination that can describe the complex patterns implied in the data. This paper combines traditional feature combination methods and deep neural networks to automate feature combinations to improve the accuracy of clickthrough rate prediction. We propose a mechannism named 'Field-aware Neural Factorization Machine' (FNFM). This model can have strong second order feature interactive learning ability like Field-aware Factorization Machine, on this basis, deep neural network is used for higher-order feature combination learning. Experiments show that the model has stronger expression ability than current deep learning feature combination models like the DeepFM, DCN and NFM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.