Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.
BackgroundBiological interactions between varicella (chickenpox) and herpes zoster (shingles), two diseases caused by the varicella zoster virus (VZV), continue to be debated including the potential effect on shingles cases following the introduction of universal childhood chickenpox vaccination programs. We investigated how chickenpox vaccination in Alberta impacts the incidence and age-distribution of shingles over 75 years post-vaccination, taking into consideration a variety of plausible theories of waning and boosting of immunity.MethodsWe developed an agent-based model representing VZV disease, transmission, vaccination states and coverage, waning and boosting of immunity in a stylized geographic area, utilizing a distance-based network. We derived parameters from literature, including modeling, epidemiological, and immunology studies. We calibrated our model to the age-specific incidence of shingles and chickenpox prior to vaccination to derive optimal combinations of duration of boosting (DoB) and waning of immunity. We conducted paired simulations with and without implementing chickenpox vaccination. We computed the count and cumulative incidence rate of shingles cases at 10, 25, 50, and 75 years intervals, following introduction of vaccination, and compared the difference between runs with vaccination and without vaccination using the Mann–Whitney U-test to determine statistical significance. We carried out sensitivity analyses by increasing and lowering vaccination coverage and removing biological effect of boosting.ResultsChickenpox vaccination led to a decrease in chickenpox cases. The cumulative incidence of chickenpox had dropped from 1,254 cases per 100,000 person-years pre chickenpox vaccination to 193 cases per 100,000 person-years 10 years after the vaccine implementation. We observed an increase in the all-ages shingles cumulative incidence at 10 and 25 years post chickenpox vaccination and mixed cumulative incidence change at 50 and 75 years post-vaccination. The magnitude of change was sensitive to DoB and ranged from an increase of 22–100 per 100,000 person-years at 10 years post-vaccination for two and seven years of boosting respectively (p < 0.001). At 75 years post-vaccination, cumulative incidence ranged from a decline of 70 to an increase of 71 per 100,000 person-years for two and seven years of boosting respectively (p < 0.001). Sensitivity analyses had a minimal impact on our inferences except for removing the effect of boosting.DiscussionOur model demonstrates that over the longer time period, there will be a reduction in shingles incidence driven by the depletion of the source of shingles reactivation; however in the short to medium term some age cohorts may experience an increase in shingles incidence. Our model offers a platform to further explore the relationship between chickenpox and shingles, including analyzing the impact of different chickenpox vaccination schedules and cost-effectiveness studies.
The study of human mobility patterns is important for both understanding human behaviour, a social phenomenon and to simulate infection transmission. Factors such as geometry representation, granularity, missing data and data noise affect the reliability, validity, and credibility of human mobility data, and any models drawn from this data.This thesis discusses the impact of spatial representations of human mobility patterns through a series of analyses using entropy and trip-length distributions as evaluation criteria, Voronoi decomposition and square grid decomposition as alternative geometry representations. I further examine a spectrum of spatial granularity, from dimensions associated with social interaction, to city, and provincial scale, and toggle analysis between raw data and post-processed data to understand the impact of noisy data and missing data influence estimation. A dataset I was involved with collecting -SHED1 -featuring multi-sensor data collection over 5 weeks among 39 participants -has been used for the experiments.An analysis of the results further strengthens the findings of Song et al., and demonstrates comparability in predictability of human mobility through geometric representation between Voronoi decomposition and square grid decompositions, suggesting a scale dependence of human mobility analysis, and demonstrating the value of using missing data analysis throughout the study.ii My sincere thanks to each and every friend and colleague of mine accompanied me during those good and bad times.iii To my parents, who offered me unconditional love and support throughout the course of this thesis.iv
IntroductionHyperglycemia in pregnancy (HIP, including gestational diabetes and pre-existing type 1 and type 2 diabetes) is increasing, with associated risks to the health of women and their babies. Strategies to manage and prevent this condition are contested. Dynamic simulation models (DSM) can test policy and program scenarios before implementation in the real world. This paper reports the development and use of an advanced DSM exploring the impact of maternal weight status interventions on incidence of HIP.MethodsA consortium of experts collaboratively developed a hybrid DSM of HIP, comprising system dynamics, agent-based and discrete event model components. The structure and parameterization drew on a range of evidence and data sources. Scenarios comparing population-level and targeted prevention interventions were simulated from 2018 to identify the intervention combination that would deliver the greatest impact.ResultsPopulation interventions promoting weight loss in early adulthood were found to be effective, reducing the population incidence of HIP by 17.3% by 2030 (baseline (‘business as usual’ scenario)=16.1%, 95% CI 15.8 to 16.4; population intervention=13.3%, 95% CI 13.0 to 13.6), more than targeted prepregnancy (5.2% reduction; incidence=15.3%, 95% CI 15.0 to 15.6) and interpregnancy (4.2% reduction; incidence=15.5%, 95% CI 15.2 to 15.8) interventions. Combining targeted interventions for high-risk groups with population interventions promoting healthy weight was most effective in reducing HIP incidence (28.8% reduction by 2030; incidence=11.5, 95% CI 11.2 to 11.8). Scenarios exploring the effect of childhood weight status on entry to adulthood demonstrated significant impact in the selected outcome measure for glycemic regulation, insulin sensitivity in the short term and HIP in the long term.DiscussionPopulation-level weight reduction interventions will be necessary to ‘turn the tide’ on HIP. Weight reduction interventions targeting high-risk individuals, while beneficial for those individuals, did not significantly impact forecasted HIP incidence rates. The importance of maintaining interventions promoting healthy weight in childhood was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.