Polythiourethanes (PTUs) crosslinked with dynamic disulfide bonds are synthesized via a nonisocyanate approach. First, a difunctional five‐membered cyclic trithiocarbonate (1) is synthesized via the reaction of diglycidyl ether of bisphenol A (DGEBA) with carbon disulfide (CS2). Thereafter, the step‐growth polymerizations of 1 with α,ω‐diamino poly(propylene oxide)s with various molar masses are carried out to obtain a series of linear poly(mercapto thiourethane)s. These linear poly(mercapto thiourethane)s are readily crosslinked upon formation of disulfide bonds, which are generated via radical coupling reaction with the side mercapto groups. These crosslinked PTUs can be tailored into the materials from thermosetting plastics to crosslinked elastomers, depending on the molar masses of α,ω‐diamino poly(propylene oxide)s. More importantly, these crosslinked PTUs display excellent reprocessing properties at elevated temperatures, which is attributable to the metathesis reaction of dynamic disulfide bonds.
In this paper, a fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor unmanned aerial vehicles (UAVs). The framework of the controller design process is divided into two stages: the attitude control process and the position control process. The main features of this work are (1) a nonlinear observer is employed to predict the motion velocities of the quadrotor UAV; therefore, only the position signals are needed for the position tracking controller design; (2) by using the minimum learning technology, there is only one parameter which needs to be updated online at each design step and the computational burden can be greatly reduced; (3) a performance function is introduced to transform the tracking error into a new variable which can make the tracking error of the system satisfy the prescribed performance indicators; (4) the sliding-mode surface is introduced in the process of the controller design, and the robustness of the system is improved. Stability analysis proved that all signals of the closed-loop system are uniformly ultimately bounded. The results of the hardware-in-the-loop simulation validate the effectiveness of the proposed control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.