T he scientific, academic, medical and data science communities have come together in the face of the COVID-19 pandemic crisis to rapidly assess novel paradigms in artificial intelligence (AI) that are rapid and secure, and potentially incentivize data sharing and model training and testing without the usual privacy and data ownership hurdles of conventional collaborations 1,2 . Healthcare providers, researchers and industry have pivoted their focus to address unmet and critical clinical needs created by the crisis, with remarkable results [3][4][5][6][7][8][9] . Clinical trial recruitment has been expedited and facilitated by national regulatory bodies and an international cooperative spirit 10-12 . The data analytics and AI disciplines have always fostered open
Background The diagnostic performance of CT for pancreatic cancer is interpreter-dependent, and approximately 40% of tumours smaller than 2 cm evade detection. Convolutional neural networks (CNNs) have shown promise in image analysis, but the networks' potential for pancreatic cancer detection and diagnosis is unclear. We aimed to investigate whether CNN could distinguish individuals with and without pancreatic cancer on CT, compared with radiologist interpretation.
MethodsIn this retrospective, diagnostic study, contrast-enhanced CT images of 370 patients with pancreatic cancer and 320 controls from a Taiwanese centre were manually labelled and randomly divided for training and validation (295 patients with pancreatic cancer and 256 controls) and testing (75 patients with pancreatic cancer and 64 controls; local test set 1). Images were preprocessed into patches, and a CNN was trained to classify patches as cancerous or non-cancerous. Individuals were classified as with or without pancreatic cancer on the basis of the proportion of patches diagnosed as cancerous by the CNN, using a cutoff determined using the training and validation set. The CNN was further tested with another local test set (101 patients with pancreatic cancers and 88 controls; local test set 2) and a US dataset (281 pancreatic cancers and 82 controls). Radiologist reports of pancreatic cancer images in the local test sets were retrieved for comparison.
Particle swarm optimization (PSO) techniques are widely used in applied fields to solve challenging optimization problems but they do not seem to have made an impact in mainstream statistical applications hitherto. PSO methods are popular because they are easy to implement and use, and seem increasingly capable of solving complicated problems without requiring any assumption on the objective function to be optimized. We modify PSO techniques to find minimax optimal designs, which have been notoriously challenging to find to date even for linear models, and show that the PSO methods can readily generate a variety of minimax optimal designs in a novel and interesting way, including adapting the algorithm to generate standardized maximin optimal designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.