Background Polyploid plants often exhibit enhanced stress tolerance. The underlying physiological and molecular bases of such mechanisms remain elusive. Here, we characterized the drought tolerance of autotetraploid sour jujube at phenotypic, physiological and molecular levels. Results The study findings showed that the autotetraploid sour jujube exhibited a superior drought tolerance and enhanced regrowth potential after dehydration in comparison with the diploid counterpart. Under drought stress, more differentially expressed genes (DEGs) were detected in autotetraploid sour jujube and the physiological responses gradually triggered important functions. Through GO enrichment analysis, many DEGs between the diploid and autotetraploid sour jujube after drought-stress exposure were annotated to the oxidation–reduction process, photosystem, DNA binding transcription factor activity and oxidoreductase activity. Six reactive oxygen species scavenging-related genes were specifically differentially expressed and the larger positive fold-changes of the DEGs involved in glutathione metabolism were detected in autotetraploid. Consistently, the lower O2− level and malonaldehyde (MDA) content and higher antioxidant enzymes activity were detected in the autotetraploid under drought-stress conditions. In addition, DEGs in the autotetraploid after stress exposure were significantly enriched in anthocyanin biosynthesis, DNA replication, photosynthesis and plant hormone, including auxin, abscisic acid and gibberellin signal-transduction pathways. Under osmotic stress conditions, genes associated with the synthesis and transport of osmotic regulators including anthocyanin biosynthesis genes were differentially expressed, and the soluble sugar, soluble protein and proline contents were significantly higher in the autotetraploid. The higher chlorophyll content and DEGs enriched in photosynthesis suggest that the photosynthetic system in the autotetraploid was enhanced compared with diploid during drought stress. Moreover, several genes encoding transcription factors (TFs) including GRAS, Bhlh, MYB, WRKY and NAC were induced specifically or to higher levels in the autotetraploid under drought-stress conditions, and hub genes, LOC107403632, LOC107422279, LOC107434947, LOC107412673 and LOC107432609, related to 18 up-regulated transcription factors in the autotetraploid compared with the diploid were identified. Conclusion Taken together, multiple responses contribute to the enhanced drought tolerance of autotetraploid sour jujube. This study could provide an important basis for elucidating the mechanism of tolerance variation after the polyploidization of trees.
The effects of whole-genome duplication span multiple levels. Previous study reported that the autotetraploid sour jujube exhibited superior drought tolerance than diploid. However, the difference in water transport system between diploids and autotetraploids and its mechanism remain unclear. Here, we found the number of xylem vessels and parenchyma cells in autotetraploid sour jujube increased to nearly twice that of diploid sour jujube, which may be closely related to the differences in xylem vessel differentiation-related ZjVND7 targets between the two ploidy types. Although the five enriched binding motifs are different, the most reliable motif in both diploid and autotetraploid sour jujube was CTTNAAG. Additionally, ZjVND7 targeted 236 and 321 genes in diploids and autotetraploids, respectively. More identified targeted genes of ZjVND7 were annotated to xylem development, secondary wall synthesis, cell death, cell division, and DNA endoreplication in autotetraploids than in diploids. SMR1 plays distinct roles in both proliferating and differentiated cells. Under drought stress, the binding signal of ZjVND7 to ZjSMR1 was stronger in autotetraploids than in diploids, and the fold-changes in the expression of ZjVND7 and ZjSMR1 were larger in the autotetraploids than in the diploids. These results suggested that the targeted regulation of ZjVND7 on ZjSMR1 may play valuable roles in autotetraploids in the response to drought stress. We hypothesized that the binding of ZjVND7 to ZjSMR1 might play a role in cell division and transdifferentiation from parenchyma cells to vessels in the xylem. This regulation could prolong the cell cycle and regulate endoreplication in response to drought stress and abscisic acid, which may be stronger in polyploids.
Ponazuril is a triazine anticoccidial drug which is the main metabolite of toltrazuril in animals, it has excellent activity against many protozoa, including Cystoisospora suis, and has broad application prospects in the control of swine coccidiosis. To evaluate the pharmacokinetic and excretion characteristics of ponazuril, 12 healthy piglets aged 10–14 days were divided into 2 groups for pharmacokinetic studies, which were given 20 mg/kg body weight ponazuril orally and intravenously, respectively. And 6 other piglets were housed individually in metabolic cages and given the same oral dose of ponazuril. After administration, the concentration of ponazuril in plasma, fecal, and urine samples collected was determined using high-performance liquid chromatography (HPLC). The plasma concentration profiles of ponazuril obtained after intravenous and oral administration were analyzed simultaneously by the nonlinear mixed-effects (NLME) model. Following the results, the pharmacokinetics of ponazuril exhibited a Michaelis-Menten elimination with Michaelis-Menten constant Km and maximum metabolic rate Vm of 10.8 μg/mL and 0.083 mg/kg/h. The apparent volume of distribution was calculated to be 735 mL/kg, and the final estimated oral bioavailability was 81%. Besides, cumulatively 86.42 ± 2.96% of ponazuril was recovered from feces and 0.31% ± 0.08% from urine during 0–1,020 h after oral administration. These findings indicated a good oral absorption of ponazuril in piglets with nonlinear disposition and slow excretion largely via feces, implying sustained drug concentration in vivo and long-lasting anticoccidial effects.
Polyploid breeding is an important strategy for tree improvement because polyploid individuals typically show superior traits, such as improved growth, stress resistance, and superior fruit quality. Artificial induction of chromosome doubling of female gametes is an effective approach to obtain triploid progeny. However, no triploid fruit tree cultivars have been developed using this approach. The objective of this study was to explore the utility of chromosome doubling in female gametes of ‘Maya’ jujube to produce triploid individuals. The temporal relationship between flower bud morphology and the megaspore meiotic stage was studied to guide the optimal timing of colchicine treatment. Colchicine solution was applied to bearing shoots of mature ‘Maya’ jujube trees in a field experiment using two treatment methods (improved cotton leaching and injection method) and three concentrations (0.3%, 0.4%, and 0.5%). The water transport rate of ‘Maya’ jujube shoots was studied using dye solution to judge the effectiveness and timing of the colchicine treatment methods. Two triploids were identified among the progenies from the colchicine-treated shoots. The highest efficiency of triploid production was 3.3% when flower buds of diameter 1.76–2.12 mm were treated with 0.3% colchicine solution for 4 h using an improved cotton leaching method. The ground diameter, plant thorn length, leaf width, leaf area, stomatal length, stomatal width, chlorophyll content, and photosynthetic parameters of one triploid individual were significantly higher than those of diploids of identical parentage at 18 months old. Thus, induction of 2n megaspores is an effective approach to generate triploid jujube. These results are expected to promote and accelerate triploid breeding in fruit trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.