In this paper, a phytoplankton and zooplankton relationship system with two delays is investigated whose coefficients are related to one of the two delays. Firstly, the dynamic behaviors of the system with one delay are given and the stability of positive equilibrium and the existence of periodic solutions are obtained. Using the fact that the system may occur, the stable switching phenomenon is verified. Under certain conditions, the periodic solutions will exist in a wide range as the delay gets away from critical values. Fixing the delay [Formula: see text] in the stable interval, it is revealed that the effect of [Formula: see text] can also cause the vibration of system. This explains that two delays play an important role in the oscillation behavior of the system. Furthermore, using the crossing curve methods, the stable changes of the positive equilibrium in two-delays plane are given, which generalizes the results of systems for which the coefficients do not depend on delay. Some numerical simulations are provided to verify the theoretical results.
In this paper, the kinetics of a class of delayed reaction-diffusion musselalgae system under Neumann boundary conditions with the half- saturation constant is studied. The global existence and priori bounds as well as the existence conditions of positive equilibrium are obtained. The half-saturation constant affect the stability of the system and may result in Turing instability. When the half-saturation constant exceeds a certain critical value, the boundary equilibrium is globally asymptotically stable which means that the larger half-saturation constant forces the mussel population toward extinction. By analyzing the distribution of the roots of the characteristic equation with two delays, the stability conditions of the positive equilibrium in the parameter space are obtained. The stability of the positive equilibrium can be changed by steady-state bifurcation, Hopf bifurcation, Hopf-Hopf bifurcation or Hopf-steady state bifurcation, which can be verified by some numerical simulations. Among parameters, the half-saturation constant and two delays drive the complexity of the system dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.