Porous Si 3 N 4 ceramics were prepared by gel casting combined with a reaction bonding route using monodispersed PMMA as the pore former, and Isobam was used as a gel agent. With the PMMA addition varying from 0 to 20 wt.%, the bending strength was degraded from 94.0 to 39.1 MPa owing to the increased porosity and decreased bulk density. The β-Si 3 N 4 prismatic grains and round pores introduced by the monodispersed PMMA micro balls would endow the samples with high strength, and the permeability of the resulting samples was increased obviously with the increase of PMMA addition. Flue gas filtration test exhibited that the filtration efficiency of the porous ceramics filter was not degraded with introducing of the PMMA pore former, even though the permeability was increased obviously. The block type of the sample with 20-wt.% PMMA additions during filtration was cake filtration, which indicates that the sample has the characteristic of being reusable after back-blowing in flue gas filtration applications. Porous Si 3 N 4 with high strength and permeability fabricated via the reaction bonding route exhibits great potential for low-cost high-performance ceramics filters.
Porous alumina, with monodispersed PMMA as pore former and Y2O3 as sintering additive, was prepared via a gel casting route with Isobam as a gelling agent. The effects of PMMA addition on its properties, including apparent porosity, bulk density, strength, permeability, and corrosion resistance to acid/alkali, were investigated. With PMMA addition increased, the apparent porosity and permeability were increased obviously, while strength and corrosion resistance to acid/alkali were deteriorated due to increased porosity. Higher firing temperature resulted in lower porosity, higher strength, lower permeability, and better corrosion resistance to acid/alkali. Coarser raw powders resulted in lower strength and higher permeability due to the coarser structure and larger pores of the fabricated samples. Because Y2O3 was used as a sintering additive, and no silica was introduced, the resulting samples possess better corrosion resistance to acid and alkali, especially much better corrosion resistance to alkali, than those reported with silica introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.