Circular RNAs (circRNAs) as a novel type of noncoding RNAs (ncRNAs) are widely studied in the development of human various diseases, including cancer. Here, we found circular RNA hsa_circ_000984 encoded by the CDK6 gene was remarkably upregulated in the tissues of colorectal cancer (CRC) patients and in the CRC cell lines. Moreover, high expression level of hsa_circ_000984 was significantly associated with advanced colorectal cancer. Further analysis revealed that hsa_circ_000984 knockdown could inhibit cell proliferation, migration, invasion in vitro and tumor formation in vivo in CRC cell lines. Mechanically, we found that hsa_circ_000984 may act as a competing endogenous RNA (ceRNA) by competitively binding miR-106b and effectively upregulate the expression of CDK6, thereby inducing a series of malignant phenotypes of tumor cells. Taken together, these observations suggest that the hsa_circ_000984 could mediate the expression of gene CDK6 by acting as a ceRNA, which may contribute to a better understanding of between the regulatory miRNA network and CRC pathogenesis.
Gallbladder cancer is the most common malignancy of the bile duct, with low 5-year survival rate and poor prognosis. Novel effective treatments are urgently needed for the therapy of this disease. Here, we showed that cordycepin, the bioactive compound in genus Cordyceps, induced growth inhibition and apoptosis in cultured gallbladder cancer cells (Mz-ChA-1, QBC939 and GBC-SD lines). We found that cordycepin inhibited mTOR complex 1 (mTORC1) activation and down-regulated multiple drug resistant (MDR)/hypoxia-inducible factor 1α (HIF-1α) expression through activating of AMP-activated protein kinase (AMPK) signaling in gallbladder cancer GBC-SD cells. Contrarily, AMPKα1-shRNA depletion dramatically inhibited cordycepin-induced molecular changes as well as GBC-SD cell apoptosis. Further, our results showed that co-treatment with a low concentration cordycepin could remarkably enhance the chemosensitivity of GBC-SD cells to gemcitabine and 5-fluorouracil (5-FU), and the mechanism may be attributed to AMPK activation and MDR degradation. In summary, cordycepin induces growth inhibition and apoptosis in gallbladder cancer cells via activating AMPK signaling. Cordycepin could be a promising new drug or chemo-adjuvant for gallbladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.