ObjectivesThe study developed and validated a radiomics nomogram based on a combination of computed tomography (CT) radiomics signature and clinical factors and explored the ability of radiomics for individualized prediction of Ki-67 expression in hepatocellular carcinoma (HCC).MethodsFirst-order, second-order, and high-order radiomics features were extracted from preoperative enhanced CT images of 172 HCC patients, and the radiomics features with predictive value for high Ki-67 expression were extracted to construct the radiomic signature prediction model. Based on the training group, the radiomics nomogram was constructed based on a combination of radiomic signature and clinical factors that showed an independent association with Ki-67 expression. The area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to verify the performance of the nomogram.ResultsSixteen higher-order radiomic features that were associated with Ki-67 expression were used to construct the radiomics signature (AUC: training group, 0.854; validation group, 0.744). In multivariate logistic regression, alfa-fetoprotein (AFP) and Edmondson grades were identified as independent predictors of Ki-67 expression. Thus, the radiomics signature was combined with AFP and Edmondson grades to construct the radiomics nomogram (AUC: training group, 0.884; validation group, 0.819). The calibration curve and DCA showed good clinical application of the nomogram.ConclusionThe radiomics nomogram developed in this study based on the high-order features of CT images can accurately predict high Ki-67 expression and provide individualized guidance for the treatment and clinical monitoring of HCC patients.
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.