Limited information is available regarding the exact function of specific WRKY transcription factors in plant responses to heat stress. We analyzed the roles of WRKY25, WRKY26, and WRKY33, three types of group I WRKY proteins, in the regulation of resistance to heat stress. Expression of WRKY25 and WRKY26 was induced upon treatment with high temperature, whereas WRKY33 expression was repressed. Heat-treated WRKY single mutants exhibited small responses, while wrky25wrky26 and wrky25wrky33 double mutants and the wrky25wrky26wrky33 triple mutants showed substantially increased susceptibility to heat stress, showing reduced germination, decreased survival, and elevated electrolyte leakage, compared with wild-type plants. In contrast, constitutive expression of WRKY25, WRKY26, or WRKY33 enhanced resistance to heat stress. Expression studies of selected heat-defense genes in single, double, and triple mutants, as well as in over-expressing lines, were correlated with their thermotolerance phenotypes and demonstrated that the three WRKY transcription factors modulate transcriptional changes of heat-inducible genes in response to heat treatment. In addition, our findings provided evidence that WRKY25, WRKY26, and WRKY33 were involved in regulation of the heat-induced ethylene-dependent response and demonstrated positive cross-regulation within these three genes. Together, these results indicate that WRKY25, WRKY26, and WRKY33 positively regulate the cooperation between the ethylene-activated and heat shock proteins-related signaling pathways that mediate responses to heat stress; and that these three proteins interact functionally and play overlapping and synergetic roles in plant thermotolerance.
Increasing energy expenditure through activation of brown adipose tissue (BAT) is a critical approach to treating obesity and diabetes. In this study, rutin, a natural compound extracted from mulberry and a drug used as a capillary stabilizer clinically for many years without any side effects, regulated whole-body energy metabolism by enhancing BAT activity. Rutin treatment significantly reduced adiposity, increased energy expenditure, and improved glucose homeostasis in both genetically obese (Db/Db) and diet-induced obesity (DIO) mice. Rutin also induced brown-like adipocyte (beige) formation in subcutaneous adipose tissue in both obesity mouse models. Mechanistically, we found that rutin directly bound to and stabilized SIRT1, leading to hypoacetylation of peroxisome proliferator-activated receptor γ coactivator-1α protein, which stimulated Tfam transactivation and eventually augmented the number of mitochondria and UCP1 activity in BAT. These findings reveal that rutin is a novel small molecule that activates BAT and may provide a novel therapeutic approach to the treatment of metabolic disorders.-Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., Lin, J., Hu, T., Zhang, H., Zhang, C., Zhou, H., Ye, R., Qi, X., Zhai, B., Huang, W., Liu, S., Xie, W., Liu, Q., Liu, X., Cui, C., Li, D., Zhan, J., Cheng, J., Yuan, Z., Jin, W. Rutin ameliorates obesity through brown fat activation.
Arabidopsis thaliana WRKY39, a transcription factor that is induced by heat stress, is a member of the group II WRKY proteins and responds to both abiotic and biotic stress. Heat-treated seeds and plants of WRKY39 knock-down mutants had increased susceptibility to heat stress, showing reduced germination, decreased survival, and elevated electrolyte leakage compared with wild-type plants. In contrast, WRKY39 over-expressing plants exhibited enhanced thermotolerance compared with wild-type plants. RT-PCR and qRT-PCR analysis of wrky39 mutants and WRKY39 over-expressing plants identified putative genes regulated by WRKY39. Consistent with a role for WRKY39 in heat tolerance, the expression levels of salicylic acid (SA)-regulated PR1 and SA-related MBF1c genes were downregulated in wrky39 mutants. In contrast, over-expression of WRKY39 increased the expression of PR1 and MBF1c. The WRKY39 transcript was induced in response to treatment with SA or methyljasmonate. Analysis of heat stressinduced WRKY39 in defense signaling mutants, including coi1, ein2, and sid2, further indicated that WRKY39 was positively co-regulated by the SA and jasmonate (JA) signaling pathways. Together, these findings reveal that heat stress-induced WRKY39 positively regulates the cooperation between the SA-and JA-activated signaling pathways that mediate responses to heat stress.
Receptor for Activated C Kinase 1 (RACK1) is viewed as a versatile scaffold protein in mammals. The protein sequence of RACK1 is highly conserved in eukaryotes. However, the function of RACK1 in plants remains poorly understood. Accumulating evidence suggested that RACK1 may be involved in hormone responses, but the precise role of RACK1 in any hormone signalling pathway remains elusive. Molecular and genetic evidence that Arabidopsis RACK1 is a negative regulator of ABA responses is provided here. It is shown that three RACK1 genes act redundantly to regulate ABA responses in seed germination, cotyledon greening and root growth, because rack1a single and double mutants are hypersensitive to ABA in each of these processes. On the other hand, plants overexpressing RACK1A displayed ABA insensitivity. Consistent with their proposed roles in seed germination and early seedling development, all three RACK1 genes were expressed in imbibed, germinating and germinated seeds. It was found that the ABA-responsive marker genes, RD29B and RAB18, were up-regulated in rack1a mutants. Furthermore, the expression of all three RACK1 genes themselves was down-regulated by ABA. Consistent with the view that RACK1 negatively regulates ABA responses, rack1a mutants lose water significantly more slowly from the rosettes and are hypersensitive to high concentrations of NaCl during seed germination. In addition, the expression of some putative RACK1-interacting, ABA-, or abiotic stress-regulated genes was mis-regulated in rack1a rack1b double mutants in response to ABA. Taken together, these findings provide compelling evidence that RACK1 is a critical, negative regulator of ABA responses.
The WRKY family is one of the major groups of plant-specific transcriptional regulators. Arabidopsis thaliana WRKY25, which is induced by heat stress, is one of the group I WRKY proteins and responds to both abiotic and biotic stress. This study has examined the regulatory role of WRKY25 using wrky25 mutant and over-expressing WRKY25 transgenic A. thaliana. After 45 degrees C for different time periods, wrky25 null mutants showed a moderate increase in thermosensitivity with decreased germination, reduced hypocotyl and root growth, and enhanced conductivity compared to those of wide-type, while WRKY25 over-expressed transgenic seeds exhibited enhanced thermotolerance. Northern blot analysis of wrky25 mutants and WRKY25 over-expressing plants identified putative genes regulated by WRKY25. In consistence with the implication of WRKY25 in heat tolerance, the expression level of six heat-inducible genes and two oxidative stress-responsive genes was more or less down-regulated in wrky25 mutants during heat stress. Among them, heat shock protein Hsp101, heat shock transcription factor HsfB2a, and cytosolic ascrobate peroxidase APX1 were reduced more obviously than other detected genes. Meanwhile, over-expression of WRKY25 increased the expression of HsfA2, HsfB1, HsfB2a, and Hsp101 slightly or moderately. Together, these findings reveal that WRKY25 plays a partial role in thermotolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.