We have determined that TPD3, a gene previously identified in a screen for mutants defective in tRNA biosynthesis, most likely encodes the A regulatory subunit of the major protein phosphatase 2A species in the yeast Saccharomyces cerevisiae. The predicted amino acid sequence of the product of TPD3 is highly homologous to the sequence of the mammalian A subunit of protein phosphatase 2A. In addition, antibodies raised against Tpd3p specifically precipitate a significant fraction of the protein phosphatase 2A activity in the cell, and extracts of tpd3 strains yield a different chromatographic profile of protein phosphatase 2A than do extracts of isogenic TPD3 strains. tpd3 deletion strains generally grow poorly and have at least two distinct phenotypes. At reduced temperatures, tpd3 strains appear to be defective in cytokinesis, since most cells become multibudded and multinucleate following a shift to 13°C. This is similar to the phenotype obtained by overexpression of the protein phosphatase 2A catalytic subunit or by loss of CDCSS, a gene that encodes a protein with homology to a second regulatory subunit of protein phosphatase 2A. At elevated temperatures, tpd3 strains are defective in transcription by RNA polymerase III. Consistent with this in vivo phenotype, extracts of tpd3 strains fail to support in vitro transcription of tRNA genes, a defect that can be reversed by addition of either purified RNA polymerase III or TFIUIB. These results reinforce the notion that protein phosphatase 2A affects a variety of biological processes in the cell and provide an initial identification of critical substrates for this phosphatase.
A variety of extracellular signals lead to the phosphorylation and activation of mitogen-activated protein kinases (MAP kinases). An activator of MAP kinases, Meki, phosphorylates MAP kinases at threonine and tyrosine residues and is itself phosphorylated at serine-218 and -222 by the protooncogene product Raf-1. By introducing negatively charged residues that may mimic the effect of phosphorylation at positions 218 and 222, we have activated the capacity of Mekl to phosphorylate MAP kinase by >100-fold. The most effective activation by a single substitution resulted from the introduction of aspartate at position 218, whereas the introduction of either aspartate or glutamate at position 222 was ineffective. Expression of the activated Meki phosphorylationsite mutants in COS-7 cells led to the activation of MAP kinase in the cells and resulted in an increase in the mass of the transfected COS-7 cell population, suggesting an important role of Mekl in the transduction of mitogenic signals.
Recently, we described the constitutive activation of Mek1 by mutation of its two serine phosphorylation sites. We have now characterized the biochemical properties of these Mek1 mutants and performed microinjection experiments to investigate the effect of an activated Mek on oocyte maturation. Single acidic substitution of either serine 218 or 222 activated Mek1 by 10-50 fold. The double acidic substitutions, [Asp218, Asp222] and [Asp218, Glu222], activated Mek1 over 6000-fold. The specific activity of the [Asp218, Asp222] and [Asp218, Glu222] Mek1 mutants, 29 nanomole phosphate per minute per milligram, is similar to that of wild-type Mek1 activated by Raf-1 in vitro. Although the mutants with double acidic substitutions could not be further activated by Raf-1, three of those with single acidic substitution were activated by Raf-1 to the specific activity of activated wild-type Mek1. Injection of the [Asp218, Asp222] Mek1 mutant into Xenopus oocytes activated both MAP kinase and histone H1 kinase and induced germinal vesicle breakdown, an effect that was only partially blocked by inhibition of protein synthesis. These data provide a measure of Mek's potential to influence cell functions and a quantitative basis to assess the biological effects of Mek1 mutants in a variety of circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.