Quasi‐2D perovskites have long been considered to have favorable “energy funnel/cascade” structures and excellent optical properties compared with their 3D counterparts. However, most quasi‐2D perovskite light‐emitting diodes (PeLEDs) exhibit high external quantum efficiency (EQE) but unsatisfactory operating stability due to Auger recombination induced by high current density. Herein, a synergetic dual‐additive strategy is adopted to prepare perovskite films with low defect density and high environmental stability by using 18‐crown‐6 and poly(ethylene glycol) methyl ether acrylate (MPEG‐MAA) as the additives. The dual additives containing COC bonds can not only effectively reduce the perovskite defects but also destroy the self‐aggregation of organic ligands, inducing the formation of perovskite nanocrystals with quasi‐core/shell structure. After thermal annealing, the MPEG‐MAA with its CC bond can be polymerized to obtain a comb‐like polymer, further protecting the passivated perovskite nanocrystals against water and oxygen. Finally, state‐of‐the‐art green PeLEDs with a normal EQE of 25.2% and a maximum EQE of 28.1% are achieved, and the operating lifetime (T50) of the device in air environment is over ten times increased, providing a novel and effective strategy to make high efficiency and long operating lifetime PeLEDs.
Partially inverse spinel CoFe2O4, which may be prepared through various heat treatments, differs remarkably from the ideal inverse spinel in many properties. The structure of partially inverse spinel CoFe2O4 as well as its electronic and magnetic properties through a systemic theoretical calculation of (Co1−x Fe x )Tet(Co x Fe2−x )OctO4 (x = 0, 0.25, 0.5, 0.75 and 1.0) have been investigated by the generalized gradient approximation (GGA) + U approach. It is found that the Co and Fe ions prefer their high spin configurations with higher spin moments at octahedral sites in all the studied cases, in line with experimental observations. The Co ions at the octahedral sites favour being far away from each other in the partial inverse spinels, which also show half metallicity at certain inversion degrees.
Strategies for developing purely organic materials exhibiting both high efficiency and persistent room-temperature phosphorescence (RTP) have remained ambiguous and challenging. Herein, we propose that introducing an intermediate charge transfer (CT) state into the donor–acceptor binary molecular system holds promise for accomplishing this goal. Guest materials showing gradient ionization potentials were selected to fine-tune the intermolecularly formed CT state when doped into the same host material with a large electron affiliation potential. Such a CT intermediate state accelerates the population of the triplet exciton to benefit phosphorescent emission and decreases the phosphorescence lifetime via quenching the long-lived triplet excitons. As a result, a “trade-off” between a long phosphorescence lifetime (595 ms) and a high phosphorescent quantum yield (27.5%) can be obtained by tuning the host–guest energy gap offset. This finding highlights the key role of CT in RTP emission and provides new guidance for developing novel RTP systems.
Highly efficient organic thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) emitters for organic light-emitting diodes (OLEDs) generally consist of a twisted donor-acceptor skeleton with aromatic amine donors. Herein, through introducing sulfur atoms into isomeric pentaphene and pentacene frameworks, we demonstrate a set of polycyclic luminophores exhibiting efficient TADF and RTP characters. The incorporation of sulfur atoms confirms a folded molecular plane, while intensifies singlet-triplet spin-orbit coupling. Further, the isomeric effect has a significant effect on the electronic structure of excited state, giving rise to the investigated compounds tunable luminescence mechanisms of TADF and RTP. With efficient triplet harvesting ability, maximum external quantum efficiencies up to 25.1 % and 8.7 % are achieved for the corresponding TADF and RTP OLEDs, verifying the great potential of sulfurbridged frameworks for highly efficient devices.
Generally, the charge transfer character of thermally activated delayed fluorescence (TADF) materials results in a long excitonic lifetime and broad‐band emission. With the combination of unity exciton utilization of TADF material and high radiative rate and narrow‐band emission of conventional fluorescence (CF) dopant, hyperfluorescence organic light‐emitting diodes (HF‐OLEDs) attract extensive attention in industry and academia recently. Till now, Dexter energy transfer (DET) from the triplet state of TADF assistant host to the dark triplet state of CF guest is the top‐drawer energy loss issue root in HF‐OLEDs. Herein, the energy loss of DET is blocked through one‐step substitution of TADF assistant host by electronically inert phenyl‐fluorene terminal for the first time. The blocking effect on DET process in HF‐OLEDs is investigated by means of photophysical characterization, theoretical calculation, device fabrication, and Monte Carlo simulation. The maximum external quantum efficiency of 18.1% with Commission Internationale de L'Eclairage coordinates of (0.61, 0.38) is achieved, which is on par with the state‐of‐the‐art efficiency for red HF‐OLEDs. This work presents a feasible design strategy for TADF assistant host aimed at achieving highly efficient HF‐OLEDs with narrow‐band emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.