As a result of the continuous global warming in recent years, the average annual number of rain days in China has been on the decline, while the number of rainstorm days has gradually increased. These conditions make it extremely easy to form a waterlogging environment, which has an adverse impact on plant growth and development. In many apple-producing areas in China, apples are subject to severe flooding during planting. In this study, two-year-old apple rootstock M9T337 was used to explore the effects of interval water stress on the morphological and physiological parameters of apple leaves. The purpose was to determine the plant’s adaptability to waterlogged environments and provide theoretical reference for management and maintenance after waterlogging. The results showed that the effect on flooded (T2) on apple stock was greater than that of waterlogged (T1), Short-term (7 d) waterlogging (T1) did not affect the growth of seedlings but was conducive to the accumulation of dry matter. Furthermore, the initial stress was be imprinted on the plants, which could directly affect their response to later stress. The results of principal component analysis (PCA) revealed that PC1, PC2, and PC3 explained 26.92%, 17.46%, and 13.03% of the physiological changes under water stress, respectively. By calculating the weight of each indicator, we concluded that high-frequency resistance r, relative chlorophyll content (SPAD) and maximum photochemical efficiency Fv/Fm are important parameters for apple rootstocks affected by water stress.
Drought area expansion has a great impact on the growth and development of plants. To contribute to the water management of strawberry, this work aims to study the chronological relationship between the electrical signals and representative physiological parameters of strawberry seedlings under drought stress. This study analyzed the characteristic variables of the electrical signals; physiological parameters under drought; and control treatments. Moreover, we compared the chronological sequence of the appearance of significant differences between drought and control treatment in terms of their physiological parameters and electrical signals. The results showed that with the increase of drought treatment, the time domain parameters (peak-to-peak value, standard deviation) and frequency domain parameters (spectral of central gravity, power spectrum entropy) of the drought-treated electrical signals showed significant differences from the control on Day 2 and Day 6, respectively (p < 0.05). The root vitality of the drought treatment was significantly different from the control on Day 4 (p < 0.05); the Fv/Fm and the SPAD were significantly different (p < 0.05) on Day 7. Electrical signals first start to show a significant difference between drought and control treatment, followed by physiological parameters. Therefore, the electrical signal can be used as an early indicator of drought stress conditions. This will provide a scientific basis for the actual water management of strawberry seedlings. It also provides a methodological and theoretical basis for other studies analyzing the relationship between plant physiological parameters and electrical signals under other stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.