In this paper we show that a slight modification to the widely popular interconnection and damping assignment passivity-based control method-originally proposed for stabilization of equilibria of nonlinear systems-allows us to provide a solution to the more challenging orbital stabilization problem. Two different, though related, ways how this procedure can be applied are proposed. First, the assignment of an energy function that has a minimum in a closed curve, i.e., with the shape of a Mexican sombrero. Second, the use of a damping matrix that changes "sign" according to the position of the state trajectory relative to the desired orbit, that is, pumping or dissipating energy. The proposed methodologies are illustrated with the example of the induction motor and prove that it yields the industry standard field oriented control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.