The time-varying characteristic of the bias in the GPS code observation is investigated using triple-frequency observations. The method for estimating the combined code bias is presented and the twelve-month (1 January–31 December 2016) triple-frequency GPS data set from 114 International GNSS Service (IGS) stations is processed to analyze the characteristic of the combined code bias. The results show that the main periods of the combined code bias are 12, 8, 6, 4, 4.8 and 2.67 h. The time-varying characteristic of the combined code bias, which is the combination of differential code bias (DCB) (P1–P5) and DCB (P1–P2), shows that the real satellite DCBs are also time-varying. The difference between the two sets of the computed constant parts of the combined code bias, with the IGS DCB products of DCB (P1–P2) and DCB (P1–P2) and the mean of the estimated 24-h combined code bias series, further show that the combined code bias cannot be replaced by the DCB (P1–P2) and DCB (P1–P5) products. The time-varying part of inter-frequency clock bias (IFCB) can be estimated by the phase and code observations and the phase based IFCB is the combinations of the triple-frequency satellite uncalibrated phase delays (UPDs) and the code-based IFCB is the function of the DCBs. The performances of the computed the IFCB with different methods in single point positioning indicate that the accuracy for the constant part of the combined code bias is reduced, when the IGS DCB products are used to compute. These performances also show that the time-varying part of IFCB estimated with phase observation is better than that of code observation. The predicted results show that 98% of the predicted constant part of the combined code bias can be corrected and the attenuation of the predicted accuracy is much less evident. However, the accuracy of the predicted time-varying part decreases significantly with the predicted time.
The Chlorophyll-a (Chl-a) concentration is an important indicator of water environmental conditions; thus, the simultaneous monitoring of large-area water bodies can be realized through the remote sensing-based retrieval of the Chl-a concentrations. The back propagation (BP) neural network learning method has been widely used for the remote sensing retrieval of water quality in first and second-class water bodies. However, many Chl-a concentration measurements must be used as learning samples with this method, which is constrained by the number of samples, due to the limited time and resources available for simultaneous measurements. In this paper, we conduct correlation analysis between the Chl-a concentration data measured at Dianshan Lake in 2020 and 2021 and synchronized Landat-8 data. Through analysis and study of the radiative transfer model and the retrieval method, a BP neural network retrieval model based on multi-phase Chl-a concentration data is proposed, which allows for the realization of remote sensing-based Chl-a monitoring in third-class water bodies. An analysis of spatiotemporal distribution characteristics was performed, and the method was compared with other constructed models. The research results indicate that the retrieval performance of the proposed BP neural network model is better than that of models constructed using multiple regression analysis and curve estimation analysis approaches, with a coefficient of determination of 0.86 and an average relative error of 19.48%. The spatial and temporal Chl-a distribution over Dianshan Lake was uneven, with high concentrations close to human production and low concentrations in the open areas of the lake. During the period from 2020 to 2021, the Chl-a concentration showed a significant upward trend. These research findings provide reference for monitoring the water environment in Dianshan Lake.
Shallow water bathymetry is critical in understanding and managing marine ecosystems. Bathymetric inversion models using airborne/satellite multispectral data are an efficient way to retrieve shallow bathymetry due to the affordable cost of airborne/satellite images and less field work required. With the increasing availability and popularity of unmanned aerial vehicle (UAV) imagery, this paper explores a new approach to obtain bathymetry using UAV visual-band (RGB) images. A combined approach is therefore proposed for retrieving bathymetry from aerial stereo RGB imagery, which is the combination of a new stereo triangulation method (an improved projection image based two-medium stereo triangulation method) and spectral inversion models. In general, the inversion models require some bathymetry reference points, which are not always feasible in many scenarios, and the proposed approach employs a new stereo triangulation method to obtain reliable bathymetric points, which act as the reference points of the inversion models. Using various numbers of triangulation points as the reference points together with a Geographical Weighted Regression (GWR) model, a series of experiments were conducted using UAV RGB images of a small island, and the results were validated against LiDAR points. The promising results indicate that the proposed approach is an efficient technique for shallow water bathymetry retrieval, and together with UAV platforms, it could be deployed easily to conduct a broad range of applications within marine environments.
This paper considers the effect of the biases in Global Positioning System (GPS) observations on satellite clock offset estimation. GPS triple-frequency satellite clock and reference observations are discussed. When the reference observation is selected and the corresponding satellite clock offset is computed, satellite clock offsets for all observations are obtained based on the computed satellite clock offset and the biases between the reference observation and other observations. The characteristics of these biases are analysed, and a service strategy for the GPS triple-frequency satellite clock offset is presented. To evaluate the computed GPS satellite clock offset, the performance in single-point positioning is validated. The positioning results show that the average relative improvements are about 20%, 28% and 19% for north, east and vertical components, when the Differential Code Bias (DCB) (P1-P2), DCB (P1-P5) and modelled Inter-Frequency Clock Bias (IFCB) are corrected. The effect of DCB (P1-P2), DCB (P1-P5) and modelled IFCB on the altitude direction is more evident than on the horizontal directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.