In this paper, a liquid crystal (LC) based tunable metamaterial absorber with dual-band absorption is presented. The proposed absorber is analysed both numerically and experimentally. The analysis shows that the two absorption peaks, originating from the new resonant structure, are experimentally detected at 269.8 GHz and 301.4 GHz when no bias voltage is applied to the LC layer. In order to understand the absorption mechanisms, simulation results for the surface current and power loss distributions are presented. Since liquid crystals are used as the dielectric layer to realize the electrically tunable absorber, a frequency tunability of 2.45% and 3.65% for the two absorption peaks is experimentally demonstrated by changing the bias voltage of the LC layer from 0 V to 12 V. Furthermore, the absorber is polarization independent and a high absorption for a wide range of oblique incidence is achieved. The designed absorber provides a way forward for the realization of tunable metamaterial devices that can be applied in multi-band detection and imaging.
Core@shell magnetic nanoparticles (core@shell MNPs) are attracting widespread attention due to their enhancement properties for potential applications in hyperthermia treatment, magnetic resonance imaging (MRI), diagnostics, and so forth. Herein, we developed a facile thermal decomposition method for controllable synthesis of a superparamagnetic, monodispersed core@shell structure (Co@Mn = CoFeO@MnFeO) with uniform size distribution (σ < 5%, d ≈ 15 nm). The CoFeO core could enhance magnetic anisotropy, and the MnFeO shell could improve the magnetization value. The Co@Mn MNPs were transferred into aqueous solution with an amphiphilic polymer (labeled 2% TAMRA) and functionalized with PEG and target molecules (folic acid, FA) to fabricate multifunctional PMA-Co@Mn-PEG-FA nanoprobes. The obtained PMA-Co@Mn-PEG-FA nanoprobes exhibit good biocompatibility, high T relaxation values, and long-term fluorescence stability (at least 6 months). Our results demonstrate that the synthesized PMA-Co@Mn-PEG-FA nanoprobes can effectively enhance the targeted MRI and fluorescent labeling in vitro and in vivo. The research outcomes will contribute to the rational design of new nanoprobes and provide a promising pathway to promote core@shell nanoprobes for further clinical contrast MRI and photodynamic therapy in the near future.
This article proposes and experimentally demonstrates an optically transparent and polarization‐insensitive metamaterial absorber in the terahertz (THz) frequencies. The absorber is formed by indium‐tin‐oxide (ITO) resistive films, providing efficient absorption with absorptivity of 94.1% at the peak absorption frequency of 120.8 GHz. We systematically investigate the surface current distribution and the power loss analysis, and explain the architecture of the absorber. Moreover, the absorber exhibits unique absorption properties at resonant frequencies, that is, featuring single‐band or dual‐band operation by changing the surface resistance of the ITO patterns. In addition, the experimental demonstration and measurement results are in good agreement with the simulated results. Most importantly, the fabricated absorber exhibits an optical transparency above 70% over the entire visible waveband, thereby enabling a wide range of applications such as optically transparent THz absorbers and detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.