In this paper, we show that solutions of stochastic nonlinear Schrödinger (NLS) equations can be approximated by solutions of coupled splitting systems. Based on these systems, we propose a new kind of fully discrete splitting schemes which possess algebraic strong convergence rates for stochastic NLS equations. Key ingredients of our approach are the exponential integrability and stability of the corresponding splitting systems and numerical approximations. In particular, under very mild conditions, we derive the optimal strong convergence rate O(N −2 + τ 1 2 ) of the spectral splitting Crank-Nicolson scheme, where N and τ denote the dimension of the approximate space and the time step size, respectively.
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
In this paper, we consider the numerical methods preserving single or multiple conserved quantities, and these methods are able to reach high order of strong convergence simultaneously based on some kinds of projection methods. The mean-square convergence orders of these methods under certain conditions are given, which can reach order 1.5 or even 2 according to the supporting methods embedded in the projection step. Finally, three numerical experiments are taken into account to show the superiority of the projection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.