In this study, PsMYB2 was successfully cloned by using cDNA from Potentilla sericea as a template, with which we constructed the plant overexpression vector pBI121-PsMYB2-GFP and then the vector was transferred into Arabidopsis thaliana wild-type plants. We studied the gene function using real-time quantitative PCR and performed a preliminary characterization and analysis of the function of PsMYB2 under abiotic stresses. This study observed that under cadmium stress, the gene expression of PsMYB2 gene in roots, stems and leaves was up to 3-6 times higher than the control. The germination rate of transgenic Arabidopsis thaliana T3 generation seeds reached more than 95%. The O2·-, H2O2 and MDA contents of the transgenic Potentilla sericea plant lines were increased but lower than those of the wild-type strain. The SOD, POD, and CAT activities were increased in both wild-type and transgenic strains, and the transgenic strains showed higher enzyme activities than the wild-type. We concluded that PsMYB2 could improve plant resistance to cadmium, which provides a theoretical basis for using transgenic plants to remediate cadmium-contaminated soil and for sustainable land use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.