However, the shuttle effect triggered by the dissolution of long-chain polysulfides (Li 2 S x , 4 ≤ x ≤ 8) results in severe active sulfur loss and fast capacity decay, which severely hinders the commercial application of these batteries. [4,6] Fundamentally, these problems are a result of the slow and complex sulfur reduction reaction (SRR), i.e., the sluggish kinetic transformation of soluble lithium polysulfides (LiPSs) to insoluble Li 2 S 2 /Li 2 S (discharge products). [7,8] Therefore, exploring effective strategies to accelerate the conversion of LiPSs from the liquid to the solid state is essential to boost the practical energy density and lifespan of lithium-sulfur batteries. [9,10] Considerable efforts have been devoted to addressing the aforementioned problems, typically by using sulfides, nitrides, phosphides as host materials to trap the LiPSs in the sulfur cathode. [11][12][13][14] However, these physical or electrostatic confinement/trapping methods fail to entirely avoid the dissolution and accumulation of LiPSs in the electrolyte. [8] A catalytic approach has therefore been proposed as a more proactive solution to cure the shuttle effect by accelerating the conversion of the liquid-phase long-chain LiPSs into final solid-phase discharge products. [15,16] Like the oxygen Seeking an electrochemical catalyst to accelerate the liquid-to-solid conversion of soluble lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium-sulfur (Li-S) batteries and thus increase their practical energy density. Mn-based mullite (SmMn 2 O 5 ) is used as a model catalyst for the sulfur redox reaction to show how the design rules involving lattice matching and 3d-orbital selection improve catalyst performance. Theoretical simulation shows that the positions of Mn and O active sites on the (001) surface are a good match with those of Li and S atoms in polysulfides, resulting in their tight anchoring to each other. Fundamentally, dz 2 and dx 2 −y 2 around the Fermi level are found to be crucial for strongly coupling with the p-orbitals of the polysulfides and thus decreasing the redox overpotential. Following the theoretical calculation, SmMn 2 O 5 catalyst is synthesized and used as an interlayer in a Li-S battery. The resulted battery has a high cycling stability over 1500 cycles at 0.5 C and more promisingly a high areal capacity of 7.5 mAh cm −2 is achieved with a sulfur loading of ≈5.6 mg cm −2 under the condition of a low electrolyte/sulfur (E/S) value ≈4.6 µL mg −1 .
The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.