To deal with the issues of high computational cost and prediction uncertainty of numerical models in train-induced ground-borne vibration prediction, a prediction method based on transfer learning is proposed in this study. In this method, the vehicle–track-coupled analytical model and three-dimensional finite element model are first used to calculate the train-induced ground vibration under various condition variables, and these data were used as training samples to pre-train the deep neural network models. Numerous train-induced ground vibration experiments were then conducted along the metro lines in Beijing, and those measured vibration data were used to fine-tune the pre-trained deep neural network model with the transfer learning strategy. A random variable obeying a Gaussian distribution is assumed over the predicted vibration acceleration levels to model the randomness of train-induced vibration, and the parameters of this distribution were determined by the statistical results of vibration monitoring data in the metro tunnels. The fully trained model could complete the prediction of train-induced ground vibration in seconds. Finally, a case study was carried out, by comparing the probabilistic prediction results with the statistical results of the field measurements, and the feasibility and the improvement of the proposed method were demonstrated.
Excessive external vibrations could affect the normal functioning and integrity of sensitive buildings such as laboratories and heritage buildings. Usually, these buildings are exposed to multiple external vibration sources simultaneously, so the monitoring and respective evaluation of the vibration from various sources is necessary for the design of targeted vibration mitigation measures. To classify the sources of vibration accurately and efficiently, the advanced hybrid models of the convolutional neural network (CNN) and long short-term memory (LSTM) network were built in this study, and the models are driven by the extensive data of external vibration recorded in Beijing, and the parametric studies reveal that the proposed optimal model can achieve an accuracy of over 97% for the identification of external vibration sources. Finally, a real-world case study is presented, in which external vibration monitoring was carried out in a laboratory and the proposed CNN+LSTM model was used to identify the sources of vibration in the monitoring so that the impact of vibration from each source on the laboratory was analyzed statistically in detail. The results demonstrate the necessity of this study and its feasibility for engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.