Aim: To evaluate the clinical benefits of implementing pharmacogenomics testing for Chinese pediatric patients. Materials & methods : Based on the drug–gene interactions involved in the Clinical Pharmacogenetics Implementation Consortium guidelines, whole-genome sequencing data from the Chinese Academy of Sciences Precision Medicine Initiative project and the medication data of pediatric patients from a children's hospital, the prevalence of the Chinese population with actionable pharmacogenomic variants was calculated, the prescribing pattern for pediatric patients was analyzed. Results: 37.0% of the drugs involved in the Clinical Pharmacogenetics Implementation Consortium guidelines were used by Chinese pediatric patients, 8.91% inpatients and 0.89% outpatients received at least one pharmacogenomics medication, 1.24% (4803) inpatients and 0.16% (2940) outpatients were estimated to be at high risk of pharmacogenomic-related adverse therapeutic outcomes. Conclusion: Implementing pharmacogenomics testing can improve therapeutic outcomes for many Chinese pediatric patients.
Pharmacogenomics clinical decision support (PGx-CDS) is an important tool to incorporate PGx information into existing clinical workflows and facilitate PGx clinical translation. However, due to the lack of a computable formalization to represent the primary PGx knowledge, the complexity of genomics information and the lag of current commercial electronic health record (EHR) system for precision medicine, it is difficult to develop computerized PGx-CDS. Therefore, we explored a novel approach to build an information system, named the Pharmacogenomics Clinical Translation Platform (PCTP), for PGx clinical implementation. The PCTP can represent, store, and manage the primary PGx knowledge in a structured and computable format. Moreover, it has the potential to provide various PGx-CDS services and simplify the integration of PGx-CDS into EHRs.
A new wind-resistant design optimization method for twin towers by utilizing link bridges, named as the Modal Substructure (MSS) method, is proposed. The MSS method combines the benefits of engineering design approaches and theoretical analysis methods to achieve efficient wind-induced vibration control tailored to specific twin tower projects. The method involves three main steps: (1) establishing control objectives based on the wind-induced response characteristics of the twin towers, (2) determining control strategies by analyzing the modal acceleration characteristics of the twin towers, and (3) performing parameter optimization of the link bridge, including assessing the damping ratio, mass ratio, and frequency ratio of the bridge. By applying the MSS method, optimal configurations for the link bridge can be identified, leading to effective vibration reduction effects. The wind-induced responses of the twin towers exhibit three distinct types: predominance of out-of-phase response, predominance of in-phase response, and equal importance of in-phase and out-of-phase responses. Each response type necessitates the implementation of specific control strategies. We propose a two-section link bridge design approach: the upper section functions as a tuned mass damper to effectively control the in-phase response, while the lower section is designed as a “stiffness + damping component” to reduce the out-of-phase response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.