Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate—the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.
Exclusion of nausea (N) and vomiting (V) from detailed consideration as symptoms of COVID‐19 is surprising as N can be an early presenting symptom. We examined the incidence of NV during infection before defining potential mechanisms. We estimate that the overall incidence of nausea (median 10.5%), although variable, is comparable with diarrhea. Poor definition of N, confusion with appetite loss, and reporting of N and/or V as a single entity may contribute to reporting variability and likely underestimation. We propose that emetic mechanisms are activated by mediators released from the intestinal epithelium by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) modulate vagal afferents projecting to the brainstem and after entry into the blood, activate the area postrema (AP) also implicated in anorexia. The receptor for spike protein of SARS‐CoV‐2, angiotensin 2 converting enzyme (ACE2), and transmembrane protease serine (for viral entry) is expressed in upper gastrointestinal (GI) enterocytes, ACE2 is expressed on enteroendocrine cells (EECs), and SARS‐CoV‐2 infects enterocytes but not EECs (studies needed with native EECs). The resultant virus‐induced release of epithelial mediators due to exocytosis, inflammation, and apoptosis provides the peripheral and central emetic drives. Additionally, data from SARS‐CoV‐2 show an increase in plasma angiotensin II (consequent on SARS‐CoV‐2/ACE2 interaction), a centrally (AP) acting emetic, providing a further potential mechanism in COVID‐19. Viral invasion of the dorsal brainstem is also a possibility but more likely in delayed onset symptoms. Overall, greater attention must be given to nausea as an early symptom of COVID‐19 and for the insights provided into the GI effects of SARS‐CoV‐2.
Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata—the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive patterns of expression suggesting potential roles for neuropeptides in the attachment process. Lastly, expression of several neuropeptide precursors is associated with ciliary bands, suggesting potential roles for the neuropeptides derived from these precursors in control of larval locomotion and/or feeding. In conclusion, our findings provide novel perspectives on the evolution and development of neuropeptide signaling systems and neuroanatomical insights into neuropeptide function in echinoderm larvae.
Vitamin D deficiency has been reported to associate with the impaired development of antigen-specific responses following vaccination. We aimed to determine whether vitamin D supplements might boost the immunogenicity and efficacy of SARS-CoV-2 vaccination by conducting three sub-studies nested within the CORONAVIT randomised controlled trial, which investigated the effects of offering vitamin D supplements at a dose of 800 IU/day or 3200 IU/day vs. no offer on risk of acute respiratory infections in UK adults with circulating 25-hydroxyvitamin D concentrations <75 nmol/L. Sub-study 1 (n = 2808) investigated the effects of vitamin D supplementation on the risk of breakthrough SARS-CoV-2 infection following two doses of SARS-CoV-2 vaccine. Sub-study 2 (n = 1853) investigated the effects of vitamin D supplementation on titres of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies in eluates of dried blood spots collected after SARS-CoV-2 vaccination. Sub-study 3 (n = 100) investigated the effects of vitamin D supplementation on neutralising antibody and cellular responses in venous blood samples collected after SARS-CoV-2 vaccination. In total, 1945/2808 (69.3%) sub-study 1 participants received two doses of ChAdOx1 nCoV-19 (Oxford–AstraZeneca); the remainder received two doses of BNT162b2 (Pfizer). Mean follow-up 25(OH)D concentrations were significantly elevated in the 800 IU/day vs. no-offer group (82.5 vs. 53.6 nmol/L; mean difference 28.8 nmol/L, 95% CI 22.8–34.8) and in the 3200 IU/day vs. no offer group (105.4 vs. 53.6 nmol/L; mean difference 51.7 nmol/L, 45.1–58.4). Vitamin D supplementation did not influence the risk of breakthrough SARS-CoV-2 infection in vaccinated participants (800 IU/day vs. no offer: adjusted hazard ratio 1.28, 95% CI 0.89 to 1.84; 3200 IU/day vs. no offer: 1.17, 0.81 to 1.70). Neither did it influence IgGAM anti-Spike titres, neutralising antibody titres or IFN-γ concentrations in the supernatants of S peptide-stimulated whole blood. In conclusion, vitamin D replacement at a dose of 800 or 3200 IU/day effectively elevated 25(OH)D concentrations, but it did not influence the protective efficacy or immunogenicity of SARS-CoV-2 vaccination when given to adults who had a sub-optimal vitamin D status at baseline.
In this population-based cohort of 7538 adults, combined IgG/A/M anti-Spike titres measured after SARS-CoV-2 vaccination were predictive of protection against breakthrough SARS-CoV-2 infection. Discrimination was significantly improved by adjustment for factors influencing risk of SARS-CoV-2 exposure, including household overcrowding, public transport use, and visits to indoor public places. Anti-Spike IgG/A/M titres showed positive correlation with neutralising antibody titres (rs = 0.80, 95% CI 0.72–0.86; p < 0.0001) and S peptide-stimulated interferon-γ concentrations (rs = 0.31, 0.13–0.47; p = 0.0009).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.