after 8000 cycles). In addition, the devices can provide power for a calculator and also support the running of an electronic watch screen, demonstrating a wide application prospect in the field of energy storage.
Experimental SectionExperimental Section is available in Supporting Information.
This work aims to evaluate the effect of lattice substitution on adsorption of hexavalent chromium by three kinds of typical clay minerals, and its common isomorph via experiments and calculations were performed based on density functional theory. The experiments (25 °C, 4 h, pH = 4 and without stirring) confirmed an order of adsorption capacity as follows: Montmorillonite (12 mg/g) > Nontronite (9 mg/g) > Beidellite (8 mg/g). Accordingly, the Mulliken populations, density of states, and band structures of the mineral models with the structural Al, Mg, Fe(II), Fe(III), and Al (in tetrahedrons) on behalf of five species of isomorph were calculated. The calculation results explain the differences between hexavalent chromium adsorption capacity of five kinds of isomorph by means of atom, key populations, overlapping valence electron orbitals, and the variation of energy band. However, no overlapping orbitals were observed in the adsorption system with structural Mg. It is implied that the structural Mg has little influence of hexavalent chromium adsorption. In conclusion, our study contributes to achieving a better understanding of modified clay minerals materials applications.
Here, we used a radioactive distribution approach for water samples from the Liu Shao Yan constructed wetland to investigate the horizontal advection of cadmium (Cd) in this urban constructed wetland. The objective of this study was to assess the effectiveness of Cd removal in constructed wetlands. Additionally, this study examined the factors affecting the horizontal distribution of Cd. Sediment samples were collected from an enclosed wet area. A predictive advection model was executed using a combination of observed Cd concentrations and predicted Cd concentrations from a genetic algorithm–backpropagation artificial neural network (GA–BPANN). A coefficient of variation was used to assess differences in Cd distribution due to flow rate, precipitation, and water plants. Scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS) results suggested that the plant species Pontederia cordata could absorb Cd, but the influence was negligible. All plants investigated in our experiment were unsuitable for Cd removal. However, predictions from the GA–BPANN algorithm indicated that 13–25% of Cd loading was efficiently removed by constructed wetland, which mainly resulted from sediment sorption, bacterial uptake, and the dilution caused by water advection. Consequently, we conclude that the constructed wetlands are an environmentally friendly and cost-effective technology that can remove Cd to a certain extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.