Solution-processed CdTe nanocrystals solar cells have attracted much attention due to their low cost, low material consumption, and potential for roll-to-roll production. Among all kinds of semiconductor materials, CdS exhibits the lowest lattice mismatch with CdTe, which permits high junction quality and high device performance. In this study, high quality CdS nanocrystals were prepared by a non-injection technique with tetraethylthiuram disufide and 2,2 -dithiobisbenzothiazole as the stabilizers. Based on the CdTe and CdS nanocrystals, devices with the architecture of ITO/ZnO/CdS/CdTe/MoO x /Au were fabricated successfully by a solution process under ambient condition. The effects of annealing conditions, film thickness, and detailed device structure on the CdTe/CdS nanocrystal solar cells were investigated and discussed in detail. We demonstrate that high junction quality can be obtained by using CdS nanocrystal thin film compared to traditional CdS film via chemical bath deposition (CBD). The best device had short circuit current density (J sc ), open circuit voltage (V oc ) and fill factor (FF) of 17.26 mA/cm 2 , 0.56 V, and 52.84%, respectively, resulting in a power conversion efficiency (PCE) of 5.14%, which is significantly higher than that reported using CBD CdS as the window layer. This work provides important suggestions for the further improvement of efficiency in CdTe nanocrystal solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.