In this paper, we propose to use 2D image projections to automatically segment a needle in a 3D ultrasound image. This approach is motivated by the twin observations that the needle is more conspicuous in a projected image, and its projected area is a minimum when the rays are cast parallel to the needle direction. To avoid the computational burden of an exhaustive 2D search for the needle direction, a faster 1D search procedure is proposed. First, a plane which contains the needle direction is determined by the initial projection direction and the (estimated) direction of the needle in the corresponding projection image. Subsequently, an adaptive 1D search technique is used to adjust the projection direction iteratively until the projected needle area is minimized. In order to remove noise and complex background structure from the projection images, a priori information about the needle position and orientation is used to crop the 3D volume, and the cropped volume is rendered with Gaussian transfer functions. We have evaluated this approach experimentally using agar and turkey breast phantoms. The results show that it can find the 3D needle orientation within 1 degree, in about 1 to 3 seconds on a 500 MHz computer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.