The rating of perceived exertion (RPE) and surface electromyography (sEMG) describe exercise intensity subjectively and objectively, while there has been a lack of research on the relationship between them during dynamic contractions to predict exercise intensity, comprehensively. The purpose of this study was to establish a model of the relationship between sEMG and RPE during dynamic exercises. Therefore, 20 healthy male subjects were organized to perform an incremental load test on a cycle ergometer, and the subjects’ RPEs (Borg Scale 6–20) were collected every minute. Additionally, the sEMGs of the subjects’ eight lower limb muscles were collected. The sEMG features based on time domain, frequency domain and time–frequency domain methods were extracted, and the relationship model was established using Gaussian process regression (GPR). The results show that the sEMG and RPE of the selected lower limb muscles are significantly correlated (p < 0.05) but that they have different monotonic correlation degrees. The model that was established with all three domain features displayed optimal performance and when the RPE was 13, the prediction error was the smallest. The study is significant for lower limb muscle training strategy and quantification of training intensity from both subjective and objective aspects, and lays a foundation for sEMG further applications in rehabilitation medicine and sports training.
Pulse signals are widely used to evaluate the status of the human cardiovascular, respiratory, and circulatory systems. In the process of being collected, the signals are usually interfered by some factors, such as the spike noise and the poor-sensor-contact noise, which have severely affected the accuracy of the subsequent detection models. In recent years, some methods have been applied to processing the above noisy signals, such as dynamic time warping, empirical mode decomposition, autocorrelation, and cross-correlation. Effective as they are, those methods are complex and difficult to implement. It is also found that the noisy signals are tightly related to gross errors. The Chauvenet criterion, one of the gross error discrimination criterions, is highly efficient and widely applicable for being without the complex calculations like decomposition and reconstruction. Therefore, in this study, based on the Chauvenet criterion, a new pulse signal preprocessing method is proposed, in which adaptive thresholds are designed, respectively, to discriminate the abnormal signals caused by spike noise and poor-sensor-contact noise. 81 hours of pulse signals (with a sleep apnea annotated every 30 seconds and 9,720 segments in total) from the MIT-BIH Polysomnographic Database are used in the study, including 35 minutes of poor-sensor-contact noises and 25 minutes of spike noises. The proposed method was used to preprocess the pulse signals, in which 9,684 segments out of a total of 9,720 were correctly discriminated, and the accuracy of the method reached 99.63%. To quantitatively evaluate the noise removal effect, a simulation experiment is conducted to compare the Jaccard Similarity Coefficient (JSC) calculated before and after the noise removal, respectively, and the results show that the preprocessed signal obtains higher JSC, closer to the reference signal, which indicates that the proposed method can effectively improve the signal quality. In order to evaluate the method, three back-propagation (BP) sleep apnea detection models with the same network structure and parameters were established, respectively. Through comparing the recognition rate and the prediction rate of the models, higher rates were obtained by using the proposed method. To prove the efficiency, the comparison experiment between the proposed Chauvenet-based method and a Romanovsky-based method was conducted, and the execution time of the proposed method is much shorter than that of the Romanovsky method. The results suggest that the superiority in execution time of the Chauvenet-based method becomes more significant as the date size increases.
To solve the problem of real-time arrhythmia classification, this paper proposes a real-time arrhythmia classification algorithm using deep learning with low latency, high practicality, and high reliability, which can be easily applied to a real-time arrhythmia classification system. In the algorithm, a classifier detects the QRS complex position in real time for heartbeat segmentation. Then, the ECG_RRR feature is constructed according to the heartbeat segmentation result. Finally, another classifier classifies the arrhythmia in real time using the ECG_RRR feature. This article uses the MIT-BIH arrhythmia database and divides the 44 qualified records into two groups (DS1 and DS2) for training and evaluation, respectively. The result shows that the recall rate, precision rate, and overall accuracy of the algorithm’s interpatient QRS complex position prediction are 98.0%, 99.5%, and 97.6%, respectively. The overall accuracy for 5-class and 13-class interpatient arrhythmia classification is 91.5% and 75.6%, respectively. Furthermore, the real-time arrhythmia classification algorithm proposed in this paper has the advantages of practicability and low latency. It is easy to deploy the algorithm since the input is the original ECG signal with no feature processing required. And, the latency of the arrhythmia classification is only the duration of one heartbeat cycle.
Background The development and innovation of biomechanical measurement methods provide a solution to the problems in ski jumping research. At present, research on ski jumping mostly focuses on the local technical characteristics of different phases, but studies on the technology transition process are less. Objectives This study aims to evaluate a measurement system (i.e. the merging of 2D video recording, inertial measurement unit and wireless pressure insole) that can capture a wide range of sport performance and focus on the key transition technical characteristics. Methods The application validity of the Xsens motion capture system in ski jumping was verified under field conditions by comparing the lower limb joint angles of eight professional ski jumpers during the takeoff phase collected by different motion capture systems (Xsens and Simi high-speed camera). Subsequently, the key transition technical characteristics of eight ski jumpers were captured on the basis of the aforementioned measurement system. Results Validation results indicated that the joint angle point-by-point curve during the takeoff phase was highly correlated and had excellent agreement (0.966 ≤ r ≤ 0.998, P < 0.001). Joint root-mean-square error (RMSE) differences between model calculations were 5.967° for hip, 6.856° for knee and 4.009° for ankle. Conclusions Compared with 2D video recording, the Xsens system shows excellent agreement to ski jumping. Furthermore, the established measurement system can effectively capture the key transition technical characteristics of athletes, particularly in the dynamic changes of straight turn into arc in inrun, the adjustment of body posture and ski movement during early flight and landing preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.