BackgroundThymoma, though a rare tumor disease, is the most common tumor of the anterior mediastinum. However, tumor size, as a critical factor, has been underestimated.ResultsAge, advanced tumor stage, and preoperative radiotherapy were poor prognostic factors of overall survival (OS) and disease specific survival (DSS) (P < 0.05 for all). Besides, tumor size was significantly related to survival. The larger tumor size indicated the less OS and DSS (P < 0.001 for all). Multivariate analysis revealed elder age, advanced stage, larger size were independent adverse predictors for survival (P < 0.05 for all). Logistic analysis revealed larger tumor size had greater rate of metastasis (P < 0.001). In the group with tumors smaller than 90mm, chemotherapy was a negative predictive factor of DSS (P < 0.05 for all), and it significantly decreased OS especially with tumor sizes between 50 and 90 mm (P < 0.001).Materials and MethodsA total of 1,272 thymoma patients were enrolled from the Surveillance, Epidemiology, and End Results (SEER) database. Survival based on thymoma size and other characteristics of tumors were analyzed by univariate and multivariate analysis. Correlation between thymoma size and thymoma metastatic status was contributed by logistic regression analysis. The efficiency of adjuvant therapy was analysis by stratification analysis.ConclusionsThymoma size could predict postoperative survival and guide chemotherapeutic regimens of patients. Larger tumor size indicated worse survival and higher metastatic rate. If thymoma is smaller than 90mm, traditional chemotherapy should be prohibited. While chemotherapy could be performed moderately when thymoma larger than 90 mm.
The purpose of this study is to determine a method for quickly and accurately estimating the chlorophyll content of peanut plants at different plant densities. This was explored using leaf spectral reflectance to monitor peanut chlorophyll content to detect sensitive spectral bands and the optimum spectral indicators to establish a quantitative model. Peanut plants under different plant density conditions were monitored during three consecutive growth periods; single-photon avalanche diode (SPAD) and hyperspectral data derived from the leaves under the different plant density conditions were recorded. By combining arbitrary bands, indices were constructed across the full spectral range (350–2500 nm) based on blade spectra: the normalized difference spectral index (NDSI), ratio spectral index (RSI), difference spectral index (DSI) and soil-adjusted spectral index (SASI). This enabled the best vegetation index reflecting peanut-leaf SPAD values to be screened out by quantifying correlations with chlorophyll content, and the peanut leaf SPAD estimation models established by regression analysis to be compared and analyzed. The results showed that the chlorophyll content of peanut leaves decreased when plant density was either too high or too low, and that it reached its maximum at the appropriate plant density. In addition, differences in the spectral reflectance of peanut leaves under different chlorophyll content levels were highly obvious. Without considering the influence of cell structure as chlorophyll content increased, leaf spectral reflectance in the visible (350–700 nm): near-infrared (700–1300 nm) ranges also increased. The spectral bands sensitive to chlorophyll content were mainly observed in the visible and near-infrared ranges. The study results showed that the best spectral indicators for determining peanut chlorophyll content were NDSI (R520, R528), RSI (R748, R561), DSI (R758, R602) and SASI (R753, R624). Testing of these regression models showed that coefficient of determination values based on the NDSI, RSI, DSI and SASI estimation models were all greater than 0.65, while root mean square error values were all lower than 2.04. Therefore, the regression model established according to the above spectral indicators was a valid predictor of the chlorophyll content of peanut leaves.
Abstract. The aim of the present study was to investigate the effect of hepatocyte growth factor receptor (c-MET) inhibition on the viability of colon cancer cells and xenografts exposed to irradiation using short hairpin (sh)RNA or the c-MET inhibitor PHA665752. The underlying mechanisms were also investigated. Human colorectal adenocarcinoma HT-29 cells were infected with a lentivirus expressing shRNAs against c-MET and were irradiated at 0, 2, 4, 6 and 8 Gy. The viability of the cells was assessed by alamarBlue ® assays. Mice bearing human colon carcinoma SW620 xenografts were randomly selected to receive 2.5% dimethyl sulfoxide (DMSO), 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks, irradiation at 10 Gy, or 25 mg/kg PHA665752 intraperitoneally once every 2 days for 3 weeks followed 24 h later by irradiation at 10 Gy. The mean tumor volume (MTV) was measured. The apoptotic rate of cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays, and double stranded break marker antibody γ-H2AX and hypoxia inducible factor (HIF)-1α expression was examined by immunohistochemistry. alamarBlue assays revealed that c-MET downregulation by shRNA markedly accentuated the irradiation-induced reduction in the viability of HT-29 cells compared with HT-29 cells irradiated at the same doses (P<0.05). A combination of irradiation and PHA665752 caused an additional reduction in the MTV (382.8±42.4 mm 3 ; P<0.01 vs. irradiation and PHA665752, 998.0±180.6 and 844.8±190.0 mm 3 , respectively). TUNEL assays revealed that irradiation and PHA665752 alone caused significant apoptosis of the SW620 cells in the tumor xenografts (P<0.01 vs. DMSO). The apoptotic index in the tumor xenografts of mice treated with a combination of irradiation and PHA665752 was significantly increased compared with mice treated with either agent alone (P<0.01). The combination of irradiation and PHA665752 was also associated with a marked increase in γ-H2AX levels and a significant decrease in HIF-1α expression in the xenografts (P<0.01). In conclusion, c-MET inhibition sensitizes colorectal cancer cells to irradiation by enhancing the formation of DNA double strand breaks and possibly alleviating tumor hypoxia. IntroductionWorldwide, colorectal cancer (CRC) is the third most common cancer (1). Currently, the standard regimen for newly diagnosed patients with locally advanced rectal cancer (grade, cT3/T4 and cN + ) is surgery in combination with neoadjuvant radiochemotherapy (2,3). However, the majority of patients have mid to advanced stage CRC at the time of diagnosis. Neoadjuvant radiochemotherapy improves the survival and anus-preservation rates by shrinking tumors, decreasing the clinical stage and reducing the pathological grade (4). While patients with local CRC have a more favorable outcome, with a 5-year survival rate of 90%, patients with metastatic CRC have a poor 5-year survival rate of 12%, despite the good therapeutic regimens that are available, including surgical resection, ad...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.