BackgroundTripartite Motif Containing 11 (TRIM11), a member of TRIM proteins, is overexpressed in high-grade gliomas and plays an oncogenic function in glioma biology. However, little is known about the role of TRIM11 in lung cancer.MethodsWe analyzed TRIM11 mRNA expression in lung cancer tissues and adjacent non-neoplastic tissues by real-time PCR. We then explored the function of TRIM11 in lung cancer cells by small interfering RNA-mediated downregulation of this protein followed by analyses of cell proliferation, migration and invasion.ResultsTRIM11 was highly expressed in lung cancer tissues and lung cancer cell lines. The higher expression of TRIM11 was correlated with the poorer prognosis of patients. Suppressing of TRIM11 expression in lung cancer cells with higher expression of TRIM11 (A549 and NCI-H446 cells) significantly reduced cell growth, motility and invasiveness. We further demonstrated that knockdown of TRIM11 affected the expression of cell proliferation-related proteins (Cyclin D1 and PCNA), and epithelial-mesenchymal transformation-related proteins (VEGF, MMP-2, MMP-9, Twist1, Snail and E-cadherin). The activity of ERK and PI3K/AKT was also suppressed in TRIM11 knocked down cells. Further experiments in lung cells with lower expression of TRIM11 (NCI-H460 and NCI-H1975 cells) with AKT inhibitor suggested that TRIM11 may promote cell motility and invasiveness through AKT pathway.ConclusionsOur results indicate that TRIM11 acts as an oncogene in lung cancer through promoting cell growth, migration and invasion. Our findings may have important implication for the detection and treatment of lung cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0379-y) contains supplementary material, which is available to authorized users.
Lung cancer is the most commonly diagnosed type of cancer worldwide. Although TRIM65 is an important protein involved in white matter lesion, the role of TRIM65 in human cancer remains less understood. Here, we reported that TRIM65 was significantly overexpressed in lung cancer tissues compared with adjacent normal lung tissues. Furthermore, TRIM65 expression was closely related to overall survival of patients with lung cancer. Knock down of TRIM65 in two lung cancer cell lines, SPC-A-1 and NCI-H358, resulted in a significant reduction in cell proliferation, migration, invasion and adhesion and a dramatic increase in G0-G1 phase arrest and apoptosis. In vivo tumorigenesis experiment also revealed that depletion of TRIM65 expression inhibited NCI-H358 cell growth. Moreover, based on gene set enrichment analysis (GSEA) with The Cancer Genome Atlas (TCGA) dataset, we found that TRIM65 was positive related to cell cycle, metastasis up and RHOA-REG pathways, which was further validated by RT-PCR and Western blot in TRIM65 knockdown lung cancer cells and indicated a possible mechanism underlying its effects on lung cancer. In summary, our study suggests that TRIM65 may work as an oncogene and a new effective therapeutic target for lung cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.