The GacS-GacA type Two-component System (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae strain EC1, the causative agent of the soft rot disease, produces antibiotic‐like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1 mainly by regulating the toxin zeamines production. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expressionof tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters which contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.
The cell motility is one of the key pathogenic factors that contribute to the virulence ofDickeya oryzea,which is a prevalent bacterial pathogen capable of infecting a range of crops and plants. We showed recently that the bacterial second messenger c-di-GMP, and the putrescine-mediated quorum sensing (QS) system, are both involved in the regulation of the bacterial motility inD. oryzeaEC1. In this study, we set to determine whether and how there two signaling mechanisms work together to modulate the bacterial motility. The results showed that the second messenger signaling system interacts with the putrescine QS system via the c-di-GMP receptor YcgR, which could promote the activity of SpeA, the rate-limiting enzyme in the putrescine biosynthesis pathway, thereby increasing the intracellular putrescine levels. However, it was shown that this facilitative effect could be inhibited by c-di-GMP molecules. In addition, we demonstrated the dominance of c-di-GMP over putrescine in the regulation of bacterial motility. The findings from this study provide the first insight into the interaction between c-di-GMP and putrescine in bacteria and provide a valuable reference for the study of intracellular second messenger system and polyamine-mediated quorum sensing system in other bacteria.ImportanceDickea oryzeais a major bacterial pathogen capable of infesting many plants and crops, causing significant economic damage to rice and banana production especially. Bacterial motility is a key pathogenic factor ofD. oryzeato compete for food resources and infect their host species, which is negatively regulated by c-di-GMP and positively regulated by putrescine, respectively. However, the connection between c-di-GMP and putrscine in regulating the motility ofD.oryzeais not understood. Here we revealed the link and the mechanism of interaction between them, showing that c-di-GMP interact with putrescine via a receptor of c-di-GMP. The significance of our research is in providing the first insight into the interaction between c-di-GMP and putrescine and the methods and experimental designs in our study will provide a valuable reference for subsequent studies on the link between c-di-GMP and putrescine in other bacteria and even the regulatory mechanisms of complex bacterial motility networks, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.